针对中短码长的低密度奇偶校验规则码(Low Density Parity Check,LDPC)规则码,该文采用消息更新规则改进和因子图变换方法,提出一种低复杂度差分迭代译码算法。在置信传播算法的基础上,仅当变量节点的消息值振荡时引入差分映射策略,得...针对中短码长的低密度奇偶校验规则码(Low Density Parity Check,LDPC)规则码,该文采用消息更新规则改进和因子图变换方法,提出一种低复杂度差分迭代译码算法。在置信传播算法的基础上,仅当变量节点的消息值振荡时引入差分映射策略,得出一种选择性的置信差分规则,自适应地调整校验节点消息的归一化系数,提高译码性能。同时,采用展开校验节点的图变换方法,将计算复杂度从随节点度分布指数性增长降至线性增长。分别在高斯白噪声信道和瑞利衰落信道下进行仿真实验,结果表明该算法和基于图变换的其他低复杂度译码算法相比,性能优越且复杂度低,和对数似然比的置信传播算法(LLR-BP)相比,高信噪比区域内的性能优异,低信噪比区域内的计算复杂度明显降低。展开更多
针对在支持向量机研究中,传统的优化方法无法处理规模不断扩大的训练集问题,为开发适应大样本的训练算法,利用LS-SVM(Least Square Support Vector Machines),提出了一种自适应迭代算法。在该算法的训练过程中,块增量学习和逆学...针对在支持向量机研究中,传统的优化方法无法处理规模不断扩大的训练集问题,为开发适应大样本的训练算法,利用LS-SVM(Least Square Support Vector Machines),提出了一种自适应迭代算法。在该算法的训练过程中,块增量学习和逆学习交替进行,能够自动得到一个小的支持向量集。将该算法与SVMLight在支持向量数量方面进行了比较,计算了UCI(University of California-Irvine)中的6个数据集和著名的Checkboard问题。结果表明,该自适应迭代算法确定的支持向量数一般不到SVMLight所得到的支持向量数的一半,其中70%多的支持向量被SVMLight所确定的支持向量集所包含,在支持向量选择方面具有高效性。展开更多
文摘针对中短码长的低密度奇偶校验规则码(Low Density Parity Check,LDPC)规则码,该文采用消息更新规则改进和因子图变换方法,提出一种低复杂度差分迭代译码算法。在置信传播算法的基础上,仅当变量节点的消息值振荡时引入差分映射策略,得出一种选择性的置信差分规则,自适应地调整校验节点消息的归一化系数,提高译码性能。同时,采用展开校验节点的图变换方法,将计算复杂度从随节点度分布指数性增长降至线性增长。分别在高斯白噪声信道和瑞利衰落信道下进行仿真实验,结果表明该算法和基于图变换的其他低复杂度译码算法相比,性能优越且复杂度低,和对数似然比的置信传播算法(LLR-BP)相比,高信噪比区域内的性能优异,低信噪比区域内的计算复杂度明显降低。
文摘针对在支持向量机研究中,传统的优化方法无法处理规模不断扩大的训练集问题,为开发适应大样本的训练算法,利用LS-SVM(Least Square Support Vector Machines),提出了一种自适应迭代算法。在该算法的训练过程中,块增量学习和逆学习交替进行,能够自动得到一个小的支持向量集。将该算法与SVMLight在支持向量数量方面进行了比较,计算了UCI(University of California-Irvine)中的6个数据集和著名的Checkboard问题。结果表明,该自适应迭代算法确定的支持向量数一般不到SVMLight所得到的支持向量数的一半,其中70%多的支持向量被SVMLight所确定的支持向量集所包含,在支持向量选择方面具有高效性。