期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
三维大地电磁自适应L1范数正则化反演 被引量:12
1
作者 阮帅 汤吉 +2 位作者 陈小斌 董泽义 孙翔宇 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2020年第10期3896-3911,共16页
常规三维大地电磁反演的正则项为L 2范数,它以电阻率空间分布函数处处光滑为模型期望,弱化了算法对电性突变界面的分辨能力.本文实现了正则项为L1范数的三维大地电磁反演算法,让模型空间梯度向量更有机会取得稀疏解,在充分正则的迭代下... 常规三维大地电磁反演的正则项为L 2范数,它以电阻率空间分布函数处处光滑为模型期望,弱化了算法对电性突变界面的分辨能力.本文实现了正则项为L1范数的三维大地电磁反演算法,让模型空间梯度向量更有机会取得稀疏解,在充分正则的迭代下能够有效突出模型真实电性界面.为避免L1范数零点不可导带来的求解困难,使用迭代重加权最小二乘法把原问题转换为一系列L2正则子问题迭代求解.每个子问题的极小方法使用改进型拟牛顿法,其下降方向既能保证正则项海塞矩阵的精确性,又能允许反演过程随迭代灵活更新正则因子.使用比值法或分段衰减法自适应更新正则因子以避免迭代早期陷入奇异解,从而提升反演收敛的稳定性并降低初始模型依赖度.合成的无噪数据反演表明L 1正则算法的模型恢复效果优于L2正则;不同噪声水平的合成数据反演表明本文的算法具有稳健性;实测数据反演对比表明在合理的正则因子调整策略下,L1正则反演结果的模型分辨率优于L2正则.另外,不同初始模型的反演测试还表明,正则因子选取不合理时L1正则可能造成方块状假异常. 展开更多
关键词 l1范数正则 加权最小二乘 大地电磁 三维反演 拟牛顿法
在线阅读 下载PDF
基于迭代重加权的高阶张量图匹配算法 被引量:1
2
作者 徐国夏 韩立新 石冰 《微型电脑应用》 2018年第1期60-63,80,共5页
图匹配是计算机视觉中基础且重要的一个问题。稀疏约束作为一种有效的优化方法,被广泛应用于机器学习和图像处理中。传统的图匹配方法并不能获得足够有效且稀疏的近似解,为解决这个问题且进一步探究稀疏优化在图匹配中的应用,故引入一种... 图匹配是计算机视觉中基础且重要的一个问题。稀疏约束作为一种有效的优化方法,被广泛应用于机器学习和图像处理中。传统的图匹配方法并不能获得足够有效且稀疏的近似解,为解决这个问题且进一步探究稀疏优化在图匹配中的应用,故引入一种L_(1/2)范数以改进高阶张量图匹配模型,并提出了基于迭代重加权的方法以近似求解该非凸非光滑模型。通过标准实验数据集上的对比实验表明,基于迭代重加权的高阶图匹配算法可以得到更加有效且稀疏性强的解,提高了匹配准确率。同时在抵抗匹配噪声的表现上优于传统算法,具有更强的鲁棒性。 展开更多
关键词 l1/2范数 加权 高阶图匹配
在线阅读 下载PDF
半航空瞬变电磁L1范数自适应正则化反演 被引量:5
3
作者 何可 郭明 +2 位作者 胡章荣 易国财 王仕兴 《物探与化探》 CAS 北大核心 2021年第5期1338-1346,共9页
长导线源半航空瞬变电磁正则化反演正则项通常采用L2范数,其拟合结果较光滑,不能有效刻画层界面信息。针对层状介质陡变模型实现正则项为L1范数的反演算法,采用迭代重加权最小二乘法将原问题转化为L2正则化子问题求解,解决L1范数存在不... 长导线源半航空瞬变电磁正则化反演正则项通常采用L2范数,其拟合结果较光滑,不能有效刻画层界面信息。针对层状介质陡变模型实现正则项为L1范数的反演算法,采用迭代重加权最小二乘法将原问题转化为L2正则化子问题求解,解决L1范数存在不可导问题;采用OpenMP技术对雅可比矩阵并行计算,提高了反演速度;对自适应正则化因子分段迭代法的调整策略进行分析并改进,改进后的自适应正则化因子调整策略更适合半航空瞬变电磁L1正则反演算法。最后对电阻率进行反演并与Occam反演结果作比较,结果表明L1正则反演充分迭代后能够突出符合真实模型的电性界面,反演电阻率与模型真实值更接近。 展开更多
关键词 l1范数 自适应正则反演 半航空瞬变电磁 加权最小二乘 OpenMP并行
在线阅读 下载PDF
基于L_(1-2)正则化的地震波阻抗“块”反演 被引量:7
4
作者 耿伟恒 陈小宏 +3 位作者 李景叶 汤韦 吴凡 张俊杰 《石油地球物理勘探》 EI CSCD 北大核心 2022年第6期1409-1417,I0006,I0007,共11页
波阻抗反演技术已经相当成熟,但仍然存在反问题的不适定性、反演的分辨率低以及对地层边界刻画不清晰等问题。为此,提出基于L_(1-2)正则化的地震波阻抗“块”反演方法。在前人的基础上,将L_(1-2)正则化引入基于模型的波阻抗反演,通过借... 波阻抗反演技术已经相当成熟,但仍然存在反问题的不适定性、反演的分辨率低以及对地层边界刻画不清晰等问题。为此,提出基于L_(1-2)正则化的地震波阻抗“块”反演方法。在前人的基础上,将L_(1-2)正则化引入基于模型的波阻抗反演,通过借鉴全变分正则化的思想,利用叠后地震数据直接获得波阻抗反演结果。首先,推导线性化的波阻抗正演近似公式并分析精度;然后,基于贝叶斯理论,引入L_(1-2)正则化构建波阻抗反演的目标函数,利用迭代重加权最小二乘算法求解目标函数,获得波阻抗反演结果。由于波阻抗反演为单道反演算法,反演多道数据时道与道之间会产生空间不连续现象,因此对反演结果执行f-x域空间预测滤波改善由噪声和单道反演算法带来的空间不连续性。相关系数的定量对比证明了基于L_(1-2)范数的反演结果优于基于L1范数和L2范数。合成数据和实际资料反演验证了所提方法的有效性和可行性。 展开更多
关键词 波阻抗反演 l_(1-2)正则 贝叶斯理论 加权最小二乘 目标函数 分辨率
在线阅读 下载PDF
L1正则化与pinball损失函数的极限学习机 被引量:4
5
作者 陈聪 《信息技术与信息化》 2023年第3期37-40,共4页
极限学习机(extreme learning machine, ELM)由于其训练速度快、易于实现等优点,在回归领域得到了广泛的应用。然而,传统ELM的平方损失函数在异常值面前放大了异常值的影响,从而降低了性能。为了提高ELM的鲁棒性,在ELM中引入pinball损... 极限学习机(extreme learning machine, ELM)由于其训练速度快、易于实现等优点,在回归领域得到了广泛的应用。然而,传统ELM的平方损失函数在异常值面前放大了异常值的影响,从而降低了性能。为了提高ELM的鲁棒性,在ELM中引入pinball损失函数。pinball损失函数与误差线性相关,与平方损失函数相比,可以减少异常值的影响。此外,L2范数正则化对于隐藏层节点缺乏稀疏性。相比之下,L1范数正则化可以改善模型的稀疏性。为了同时具有鲁棒性和稀疏性,提出了一种基于L1范数正则化和pinball损失函数的ELM模型,通过迭代重加权算法求解相应的优化问题。为了验证模型的鲁棒性和稀疏性,在6个真实数据集上进行实验。实验结果表明,提出的L1-PELM优于其他方法。特别是对于异常值比率较大的数据,L1-PELM不仅对异常值不敏感,而且保持了稀疏性。 展开更多
关键词 极限学习机 l1正则 pinball损失函数 加权 鲁棒性 稀疏性
在线阅读 下载PDF
基于交替分裂Bregman迭代算法的鲁棒多道预测反褶积方法 被引量:4
6
作者 李钟晓 李振春 《石油地球物理勘探》 EI CSCD 北大核心 2017年第4期678-688,共11页
将一次波的L_1范数最小化约束引入多道预测反褶积,提出基于交替分裂Bregman迭代算法的鲁棒多道预测反褶积方法。所提方法利用距离算子求解L_1范数最小化优化问题,在整个迭代过程中只需计算一次矩阵求逆,计算复杂度较低。首先介绍了多道... 将一次波的L_1范数最小化约束引入多道预测反褶积,提出基于交替分裂Bregman迭代算法的鲁棒多道预测反褶积方法。所提方法利用距离算子求解L_1范数最小化优化问题,在整个迭代过程中只需计算一次矩阵求逆,计算复杂度较低。首先介绍了多道预测反褶积方法的数学模型,然后给出鲁棒多道预测反褶积的优化问题,并阐述了交替分裂Bregman迭代算法求解优化问题的步骤。相对于基于迭代重加权最小二乘法的鲁棒多道预测反褶积方法,文中方法在保持多次波压制效果的同时,能进一步提高计算效率;相对于基于最小二乘法的多道预测反褶积方法和基于交替分裂Bregman迭代算法的鲁棒单道预测反褶积方法,文中方法能有效地均衡一次波的保护和多次波的压制。另外,所提方法利用了多道预测反褶积方法的优势,比单道预测反褶积方法能更好地适应海底的起伏变化。模型数据和实际数据测试结果表明:当水层多次波具有周期性时,文中方法能在保护一次波的同时,有效地压制水层多次波,并具有较高的计算效率;当水层多次波的周期性假设得不到很好的满足时,很难对多次波的压制效果进行直观判断。 展开更多
关键词 预测反褶积 l1范数最小约束 交替分裂 Bregman算法 水层多次波 计算效率
在线阅读 下载PDF
相关观测的L_1范数最小化方法的比较分析 被引量:1
7
作者 赵俊 《测绘地理信息》 2019年第3期33-37,共5页
在抵御粗差影响方面,L_1范数最小化方法比最小二乘更具可靠性。求解L_1范数最小化问题,主要有选权迭代法和线性规划法两种方法。针对相关观测,通常采用权阵的对角线元素来构造L_1范数最小化问题的目标函数,这种处理方法容易忽略观测值... 在抵御粗差影响方面,L_1范数最小化方法比最小二乘更具可靠性。求解L_1范数最小化问题,主要有选权迭代法和线性规划法两种方法。针对相关观测,通常采用权阵的对角线元素来构造L_1范数最小化问题的目标函数,这种处理方法容易忽略观测值之间的相关性。如果采用Cholesky分解消去观测值之间的相关性,则容易造成粗差的转移,进而影响抗差功效。本文对上述两种方法进行了比较分析,数值实验结果表明将相关观测转换为独立等权观测,有利于增强线性规划的稳健性,而在探测粗差方面则具有等价性。由于基于选权迭代的方法收敛性较差,故不适合求解L_1范数最小化问题。 展开更多
关键词 l1范数最小方法 粗差 相关观测 线性规划 选权
原文传递
压缩波束形成声源识别的改进研究 被引量:4
8
作者 张晋源 杨洋 褚志刚 《振动与冲击》 EI CSCD 北大核心 2019年第1期195-199,共5页
凭借空间分辨率高、旁瓣衰减能力强等优势,压缩波束形成声源识别算法备受关注。传统方法直接最小化声源分布向量的l_1范数,重构声源分布与真实声源分布之间存在一定偏差,声源无法被直接准确量化。为改善该问题,给出迭代重加权l_1范数最... 凭借空间分辨率高、旁瓣衰减能力强等优势,压缩波束形成声源识别算法备受关注。传统方法直接最小化声源分布向量的l_1范数,重构声源分布与真实声源分布之间存在一定偏差,声源无法被直接准确量化。为改善该问题,给出迭代重加权l_1范数最小化方法,其迭代求解声源分布,且每次迭代中对声源分布向量进行加权。仿真及试验结果均证明:所给方法能有效降低传统方法的重构偏差,能直接用主瓣峰值准确量化声源强度,且空间分辨率更高、旁瓣衰减能力更强。 展开更多
关键词 声源识别 压缩波束形成 改进 迭代重加权l1范数最小化
在线阅读 下载PDF
稀疏复杂网络的识别(英文) 被引量:3
9
作者 柯婷婷 《数学杂志》 CSCD 北大核心 2015年第4期763-772,共10页
本文研究了一种给定的复杂网络结构识别问题.利用网络结构的稀疏性质,提出了一个带有L1正则化的最小二乘模型.数值仿真表明该算法对带噪声或不带噪声的较大型网络结构的识别是非常有效的.
关键词 复杂网络 结构识别 l1正则 加权最小二乘 牛顿方法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部