针对标准粒子群算法在求解路网问题时显现出易陷入局部极值的问题,根据高校地理数据,提出一种求解高校路网的逆序变异的新混合PSO算法。为平衡算法的全局和局部搜索能力及增强种群多样性,将一种自平衡策略作为变异条件,在产生新的群体...针对标准粒子群算法在求解路网问题时显现出易陷入局部极值的问题,根据高校地理数据,提出一种求解高校路网的逆序变异的新混合PSO算法。为平衡算法的全局和局部搜索能力及增强种群多样性,将一种自平衡策略作为变异条件,在产生新的群体中按照逆序变异率算子对粒子进行位置变异,从而使得粒子摆脱局部极值后继续进行迭代更新操作。以Visual Studio 2005中C++编程实现实验仿真,结果表明此算法不但能有效求解高校路网问题,而且新算法收敛精度高,有效克服了早熟收敛问题。展开更多
Using the photon creation operator's eigenstate theory we derive the normally ordered expansion of inverse of the squeezed creation operator. It turns out that using this operator a kind of excitation on the squeezed...Using the photon creation operator's eigenstate theory we derive the normally ordered expansion of inverse of the squeezed creation operator. It turns out that using this operator a kind of excitation on the squeezed vacuum states can be formed.展开更多
In this paper we introduce two sequences of operator functions and their dualfunctions: fk(t) = (flogt)k-(t-1)k/log^k+2t (k = 1,2,...), gk(t) = (t-1)k-logkt /log^k+1t (k = 1,2,...) and fk(t)tklog^k...In this paper we introduce two sequences of operator functions and their dualfunctions: fk(t) = (flogt)k-(t-1)k/log^k+2t (k = 1,2,...), gk(t) = (t-1)k-logkt /log^k+1t (k = 1,2,...) and fk(t)tklog^k+1t/(tlogt)k-(t-1)^k(k=1,2…),gk(t)=t^klog^k+1t/(t-1)^k-log^kt(k=1,2…)defined onWe find that they are all operator monotone functions with respect to the strictly chaoticorder and some ordinary orders among positive invertible operators. Indeed, we extend theresults of the operator monotone function tlogt-t+1/log^2t which is widely used in the theory of heat transfer of the heat engineering and fluid mechanics[1].展开更多
文摘针对标准粒子群算法在求解路网问题时显现出易陷入局部极值的问题,根据高校地理数据,提出一种求解高校路网的逆序变异的新混合PSO算法。为平衡算法的全局和局部搜索能力及增强种群多样性,将一种自平衡策略作为变异条件,在产生新的群体中按照逆序变异率算子对粒子进行位置变异,从而使得粒子摆脱局部极值后继续进行迭代更新操作。以Visual Studio 2005中C++编程实现实验仿真,结果表明此算法不但能有效求解高校路网问题,而且新算法收敛精度高,有效克服了早熟收敛问题。
文摘Using the photon creation operator's eigenstate theory we derive the normally ordered expansion of inverse of the squeezed creation operator. It turns out that using this operator a kind of excitation on the squeezed vacuum states can be formed.
文摘In this paper we introduce two sequences of operator functions and their dualfunctions: fk(t) = (flogt)k-(t-1)k/log^k+2t (k = 1,2,...), gk(t) = (t-1)k-logkt /log^k+1t (k = 1,2,...) and fk(t)tklog^k+1t/(tlogt)k-(t-1)^k(k=1,2…),gk(t)=t^klog^k+1t/(t-1)^k-log^kt(k=1,2…)defined onWe find that they are all operator monotone functions with respect to the strictly chaoticorder and some ordinary orders among positive invertible operators. Indeed, we extend theresults of the operator monotone function tlogt-t+1/log^2t which is widely used in the theory of heat transfer of the heat engineering and fluid mechanics[1].