为了准确地识别铁路转辙机所处的工作状态,保证列车能够安全行驶并转向,提出了一种基于声音信号的转辙机状态识别方法。首先将声音信号预处理后提取其梅尔倒谱系数(Mel frequency cepstrum coefficient,MFCC);为更加全面表征转辙机声信...为了准确地识别铁路转辙机所处的工作状态,保证列车能够安全行驶并转向,提出了一种基于声音信号的转辙机状态识别方法。首先将声音信号预处理后提取其梅尔倒谱系数(Mel frequency cepstrum coefficient,MFCC);为更加全面表征转辙机声信号的特点,对MFCC进行改进得到多尺度MFCC特征;引入卷积神经网络(convolutional neural network,CNN)构建转辙机声信号识别模型,并采用五折交叉验证法获得两种特征的识别准确率。将S700K型转辙机在4种状态下运行时采集的真实声音信号进行训练和测试。结果表明:多尺度MFCC特征可使转辙机声音状态识别准确率至少提高7.5%。并且在低信噪比(signal-to-noise ratio,SNR)下,多尺度MFCC特征也有更好的表现,其准确率相较传统MFCC可提升35%。展开更多
针对法庭说话人识别中待鉴定人员语音样本不足的问题,提出了一种新的对说话人自身变化性建模的替代性方法以及相应的方差控制算法。使用同条件下的参考数据库构建识别系统的多个相同说话人得分模型,代替检验需要的多个非同期的带检验人...针对法庭说话人识别中待鉴定人员语音样本不足的问题,提出了一种新的对说话人自身变化性建模的替代性方法以及相应的方差控制算法。使用同条件下的参考数据库构建识别系统的多个相同说话人得分模型,代替检验需要的多个非同期的带检验人员语音样本比较时的得分模型,以获得能反映说话人自身变化性的统计模型。基于目前最新的法庭证据评估的似然比证据强度评估体系,使用MFCC(Mel Frequency Cepstral Coefficients)和GFCC(Gammatone Frequency Cepstral Coefficients)特征对该方法的有效性进行了验证,并对上述特征进行了特征级和决策级融合。实验结果表明:该方法在纯净语音环境和噪声环境下都具有很高的识别率和稳定性,并且特征级融合能进一步提高识别系统的性能。展开更多
现阶段,汽车异响的诊断主要依赖有经验的工程师进行主观评判,存在不准确、易错判、易漏判的问题。针对汽车敲击异响实测信号进行统计分析得到梅尔倒谱系数(Mel frequency cepstrum coefficient,MFCC),并以此作为表征异响来源的特征向量...现阶段,汽车异响的诊断主要依赖有经验的工程师进行主观评判,存在不准确、易错判、易漏判的问题。针对汽车敲击异响实测信号进行统计分析得到梅尔倒谱系数(Mel frequency cepstrum coefficient,MFCC),并以此作为表征异响来源的特征向量,基于最大似然估计法构建其联合概率分布高斯混合模型(Gaussian mixture model,GMM),从而针对未知实测异响信号可利用该GMM模型进行似然判别。指出了说话人识别技术与敲击异响识别的不同之处即Mel三角滤波器个数和离散余弦变换输出系数个数的选取方式,并对方法的可行性进行分析,最后试验加以验证。结果显示此方法的识别率达100%,拒绝率达100%以上,为汽车异响的客观评价方法打下基础。展开更多
文摘针对法庭说话人识别中待鉴定人员语音样本不足的问题,提出了一种新的对说话人自身变化性建模的替代性方法以及相应的方差控制算法。使用同条件下的参考数据库构建识别系统的多个相同说话人得分模型,代替检验需要的多个非同期的带检验人员语音样本比较时的得分模型,以获得能反映说话人自身变化性的统计模型。基于目前最新的法庭证据评估的似然比证据强度评估体系,使用MFCC(Mel Frequency Cepstral Coefficients)和GFCC(Gammatone Frequency Cepstral Coefficients)特征对该方法的有效性进行了验证,并对上述特征进行了特征级和决策级融合。实验结果表明:该方法在纯净语音环境和噪声环境下都具有很高的识别率和稳定性,并且特征级融合能进一步提高识别系统的性能。