In the IEEE g02. 11 protocol, the adoption of the exponential backoff technique leads to throughput performance strongly dependent on the initial contention window size and, most importantly, on the number of contendi...In the IEEE g02. 11 protocol, the adoption of the exponential backoff technique leads to throughput performance strongly dependent on the initial contention window size and, most importantly, on the number of contending stations considered in the network. This paper proposes a simple but accurate method to dynamically estimate the number of contending stations in a wireless local area network ( WLAN ). Based on estimation, all the mobile stations dynamically adjust the initial contention window in medium access control ( MAC ) layer to avoid collisions. The simulation results show that the proposed algorithm can achieve efficient channel utilization, higher system throughput, and better fairness performance.展开更多
Time efficiency of key establishment and update is one of the major problems contributory key managements strive to address.To achieve better time efficiency in key establishment,we propose a Location-based Huffman(L-...Time efficiency of key establishment and update is one of the major problems contributory key managements strive to address.To achieve better time efficiency in key establishment,we propose a Location-based Huffman(L-Huffman) scheme.First,users are separated into several small groups to minimize communication cost when they are distributed over large networks.Second,both user's computation difference and message transmission delay are taken into consideration when Huffman coding is employed to forming the optimal key tree.Third,the combined weights in Huffman tree are located in a higher place of the key tree to reduce the variance of the average key generation time and minimize the longest key generation time.Simulations demonstrate that L-Huffman has much better performance in wide area networks and is a little better in local area network than Huffman scheme.展开更多
In this paper, we propose an energy-efficient power control scheme for device-to-device(D2D) communications underlaying cellular networks, where multiple D2D pairs reuse the same resource blocks allocated to one cellu...In this paper, we propose an energy-efficient power control scheme for device-to-device(D2D) communications underlaying cellular networks, where multiple D2D pairs reuse the same resource blocks allocated to one cellular user. Taking the maximum allowed transmit power and the minimum data rate requirement into consideration, we formulate the energy efficiency maximization problem as a non-concave fractional programming(FP) problem and then develop a two-loop iterative algorithm to solve it. In the outer loop, we adopt Dinkelbach method to equivalently transform the FP problem into a series of parametric subtractive-form problems, and in the inner loop we solve the parametric subtractive problems based on successive convex approximation and geometric programming method to obtain the solutions satisfying the KarushKuhn-Tucker conditions. Simulation results demonstrate the validity and efficiency of the proposed scheme, and illustrate the impact of different parameters on system performance.展开更多
基金Supported by National Natural Science Foundation of China ( No. 60472078) , and Cisco University Research Program Fund at Community Foundation Silicon Valley( No. 20029303 ).
文摘In the IEEE g02. 11 protocol, the adoption of the exponential backoff technique leads to throughput performance strongly dependent on the initial contention window size and, most importantly, on the number of contending stations considered in the network. This paper proposes a simple but accurate method to dynamically estimate the number of contending stations in a wireless local area network ( WLAN ). Based on estimation, all the mobile stations dynamically adjust the initial contention window in medium access control ( MAC ) layer to avoid collisions. The simulation results show that the proposed algorithm can achieve efficient channel utilization, higher system throughput, and better fairness performance.
基金Supported by National Basic Research and Development Program of China (2007CB307102)
文摘Time efficiency of key establishment and update is one of the major problems contributory key managements strive to address.To achieve better time efficiency in key establishment,we propose a Location-based Huffman(L-Huffman) scheme.First,users are separated into several small groups to minimize communication cost when they are distributed over large networks.Second,both user's computation difference and message transmission delay are taken into consideration when Huffman coding is employed to forming the optimal key tree.Third,the combined weights in Huffman tree are located in a higher place of the key tree to reduce the variance of the average key generation time and minimize the longest key generation time.Simulations demonstrate that L-Huffman has much better performance in wide area networks and is a little better in local area network than Huffman scheme.
基金supported by National Natural Science Foundation of China (No.61501028)Beijing Institute of Technology Research Fund Program for Young Scholars
文摘In this paper, we propose an energy-efficient power control scheme for device-to-device(D2D) communications underlaying cellular networks, where multiple D2D pairs reuse the same resource blocks allocated to one cellular user. Taking the maximum allowed transmit power and the minimum data rate requirement into consideration, we formulate the energy efficiency maximization problem as a non-concave fractional programming(FP) problem and then develop a two-loop iterative algorithm to solve it. In the outer loop, we adopt Dinkelbach method to equivalently transform the FP problem into a series of parametric subtractive-form problems, and in the inner loop we solve the parametric subtractive problems based on successive convex approximation and geometric programming method to obtain the solutions satisfying the KarushKuhn-Tucker conditions. Simulation results demonstrate the validity and efficiency of the proposed scheme, and illustrate the impact of different parameters on system performance.