We improve the genetic algorithm by combining it with a simulated annealing algorithm. The improved algorithm is used to extract model parameters of SOI MOSFETs, which are fabricated with standard 1.2μm CMOS/SOI tech...We improve the genetic algorithm by combining it with a simulated annealing algorithm. The improved algorithm is used to extract model parameters of SOI MOSFETs, which are fabricated with standard 1.2μm CMOS/SOI technology developed by the Institute of Microelectronics of the Chinese Academy of Sciences. The simulation results using this model are in excellent agreement with experimental results. The precision is improved noticeably compared to commercial software. This method requires neither a deeper understanding of SOl MOSFETs model nor more complex computations than conventional algorithms used by commercial software. Comprehensive verification shows that this model is applicable to a very large range of device sizes.展开更多
基金国家自然科学基金(the National Natural Science Foundation of China under Grant No.60673046No.60673066)辽宁省自然科学基金(the Natural Science Foundation of Liaoning Province of China under Grant No.20051082)
文摘We improve the genetic algorithm by combining it with a simulated annealing algorithm. The improved algorithm is used to extract model parameters of SOI MOSFETs, which are fabricated with standard 1.2μm CMOS/SOI technology developed by the Institute of Microelectronics of the Chinese Academy of Sciences. The simulation results using this model are in excellent agreement with experimental results. The precision is improved noticeably compared to commercial software. This method requires neither a deeper understanding of SOl MOSFETs model nor more complex computations than conventional algorithms used by commercial software. Comprehensive verification shows that this model is applicable to a very large range of device sizes.