期刊文献+
共找到3,264篇文章
< 1 2 164 >
每页显示 20 50 100
基于遗传算法改进BP神经网络的电火花加工参数优化方法 被引量:1
1
作者 王琛 《机械设计与制造工程》 2024年第11期51-56,共6页
针对电火花加工现行智能控制方式下,由于刀尖的震动幅值高,导致加工速度低和加工后零件表面粗糙度高的问题,提出基于遗传算法改进BP神经网络的电火花加工参数优化方法。通过分析电火花加工原理,构建基于BP神经网络电火花加工参数优化模... 针对电火花加工现行智能控制方式下,由于刀尖的震动幅值高,导致加工速度低和加工后零件表面粗糙度高的问题,提出基于遗传算法改进BP神经网络的电火花加工参数优化方法。通过分析电火花加工原理,构建基于BP神经网络电火花加工参数优化模型,以6个加工参数作为模型输入,以加工速度和零件表面粗糙度为模型输出,并将模型期望输出值和实际值之间的误差视作遗传算法的适应度函数,以适应度函数最小化为标准,获取最优权值与阈值作用于BP神经网络,实现电火花加工参数优化。实验结果表明,该方法最低加工速度仅为16.6 mm^(2)/min,表面粗糙度最高仅为6.7μm,有效提升了加工效率。 展开更多
关键词 bp神经网络 遗传算法 电火花 机械加工 参数优化 粗糙度
在线阅读 下载PDF
基于遗传算法改进BP神经网络的桩基横向承载力预测
2
作者 李云峰 闫思行 +3 位作者 冉斌斌 陈涛 秦玮 张小龙 《科技创新与应用》 2024年第33期30-33,共4页
针对传统BP神经网络在桩基横向承载力预测中存在的局限性,如易陷入局部最优和收敛速度慢等问题,该文提出一种基于遗传算法(GA)改进的BP神经网络模型。该模型利用遗传算法优化初始权重和偏置,以提高预测精度和模型泛化能力。选取影响桩... 针对传统BP神经网络在桩基横向承载力预测中存在的局限性,如易陷入局部最优和收敛速度慢等问题,该文提出一种基于遗传算法(GA)改进的BP神经网络模型。该模型利用遗传算法优化初始权重和偏置,以提高预测精度和模型泛化能力。选取影响桩基横向承载力的关键因素作为输入参数:桩径、荷载的偏心距、桩入土深度及土的不排水抗剪强度。通过训练与测试,对比分析传统BP神经网络模型和基于遗传算法改进的BP神经网络模型的预测效果。结果表明,GA-BP模型在测试集上的相对误差平均值降低至2.53%,明显优于BP模型的6.44%。此外,GA-BP模型未出现过度拟合现象,表明其在捕捉数据潜在模式和泛化新样本方面表现出色。综上所述,基于遗传算法优化的BP神经网络为横向受荷桩承载力的准确预测提供一种有效途径,对于工程实践具有一定的指导意义和应用价值。 展开更多
关键词 桩基横向承载力 遗传算法 bp神经网络 承载力预测 桥梁工程
在线阅读 下载PDF
遗传算法改进BP神经网络在地下水水质评价中的应用 被引量:12
3
作者 冯冬青 郭艳 《郑州大学学报(工学版)》 CAS 北大核心 2009年第3期126-129,共4页
为了准确、高效地评定地下水水质,提出了一种遗传算法与神经网络相结合的混合评价算法,针对水质评价的多变量和非线性,采用BP神经网络对其进行综合评价计算,BP算法易陷入局部极小的缺点则通过引入遗传算法来克服,将两者有机的结合起来... 为了准确、高效地评定地下水水质,提出了一种遗传算法与神经网络相结合的混合评价算法,针对水质评价的多变量和非线性,采用BP神经网络对其进行综合评价计算,BP算法易陷入局部极小的缺点则通过引入遗传算法来克服,将两者有机的结合起来实现神经网络的训练和知识库的建立.通过算法比较和实例结果分析,证明了该算法的有效性. 展开更多
关键词 bp神经网络 遗传算法 水质评价
在线阅读 下载PDF
基于遗传算法改进BP神经网络的风电功率预测研究 被引量:10
4
作者 王冰冰 赵天乐 《电工电气》 2019年第12期16-21,共6页
风电功率预测对于风电场和电网的安全可靠运行具有重要意义。以某风力发电机为研究对象,根据该风机历史天气信息和风电功率数据,使用遗传算法改进BP神经网络,构建复合型神经网络的风电功率预测系统。运用MATLAB软件对算法进行编程与仿真... 风电功率预测对于风电场和电网的安全可靠运行具有重要意义。以某风力发电机为研究对象,根据该风机历史天气信息和风电功率数据,使用遗传算法改进BP神经网络,构建复合型神经网络的风电功率预测系统。运用MATLAB软件对算法进行编程与仿真,仿真结果表明,单一的BP神经网络预测系统波动性较高,精度不足,而复合型的神经网络算法有效地解决了这一问题,改进后的预测系统精度较高、稳定性较强,满足工业生产需求。 展开更多
关键词 风电 功率预测 bp神经网络 遗传算法
在线阅读 下载PDF
基于遗传算法优化BP神经网络的不同后墙材质日光温室内逐时气温模拟和动态预报
5
作者 石茗化 魏渠成 +4 位作者 乐章燕 王靖 张艳艳 周鹏 张继波 《中国农业气象》 2025年第4期483-498,共16页
为提高日光温室内气温预报准确率,利用温室外实时气象预报数据(气温、相对湿度和风速)和温室内前3h气温数据,引入遗传算法(Genetic algorithm,GA)对BP神经网络模型的初始权值和阈值进行优化,构建GA-BP神经网络模型对冬季和春季不同后墙... 为提高日光温室内气温预报准确率,利用温室外实时气象预报数据(气温、相对湿度和风速)和温室内前3h气温数据,引入遗传算法(Genetic algorithm,GA)对BP神经网络模型的初始权值和阈值进行优化,构建GA-BP神经网络模型对冬季和春季不同后墙材质(土墙和砖墙)温室内逐时气温进行模拟和动态预报,并与逐步回归(Stepwise regression,SR)和BP神经网络模型模拟结果进行对比。结果表明:在后墙材质为土墙的温室内,SR模型模拟值与观测值的均方根误差(RMSE)为0.82~2.01℃,归一化均方根误差(NRMSE)为5.13%~9.97%;BP神经网络模型模拟值与观测值的RMSE为0.82~1.79℃,NRMSE为5.13%~7.74%;GA-BP神经网络模型模拟值与观测值的RMSE为0.62~1.47℃,NRMSE为3.88%~6.40%。在后墙材质为砖墙的温室内,SR模型模拟值与观测值的RMSE为1.07~2.60℃,NRMSE为5.11%~16.98%;BP神经网络模型模拟值与观测值的RMSE为1.11~2.29℃,NRMSE为6.12%~14.95%;GA-BP神经网络模型模拟值与观测值的RMSE为0.89~1.73℃,NRMSE为4.76%~11.30%。GA-BP神经网络模型误差指标值均小于SR和BP模型,引入遗传算法优化BP神经网络,可提高逐时气温的预报精度。由于砖墙的保温性能比土墙稍差,气温的波动性更大,土墙材质的温室内气温预报精度更高。随着预报时间提前,预报误差增加,选取温室外实时气温、相对湿度、风速和室内前3h气温数据作为建模因子所建立的GA-BP神经网络模型精度最优。GA-BP神经网络模型具有更高的准确率和稳定性,更适用于预报温室内逐时气温。 展开更多
关键词 遗传算法 bp神经网络 逐步回归 气温 日光温室 动态预报
在线阅读 下载PDF
基于遗传算法优化BP神经网络的配电网线损分析方法研究
6
作者 刘懿莹 栾松 张师 《电气开关》 2025年第1期69-72,共4页
确定准确简便的线损计算和分析方法是加强10kV低压配电网线损管理的必要途径,基于遗传算法优化BP神经网络模型进行配电网线损分析。通过免疫系统的加入,使遗传算法克服了通常遗传算法收敛方向无法控制的缺陷,并用免疫遗传算法对BP神经... 确定准确简便的线损计算和分析方法是加强10kV低压配电网线损管理的必要途径,基于遗传算法优化BP神经网络模型进行配电网线损分析。通过免疫系统的加入,使遗传算法克服了通常遗传算法收敛方向无法控制的缺陷,并用免疫遗传算法对BP神经网络的连接权值进行优化。通过算例分析结果可知,方法可以有效计算配电网线损。 展开更多
关键词 遗传算法 bp神经网络 配电网线损 免疫系统 权值优化
在线阅读 下载PDF
基于BP神经网络——遗传算法的咖啡壳炭化工艺参数优化
7
作者 张霞 苏盼杰 +2 位作者 朱静哲 王伊洋 黄峻伟 《智能化农业装备学报(中英文)》 2025年第1期51-58,共8页
生物炭是一种针对生物质能高效开发的多功能材料,随着对生物质能高效开发的关注,生物炭的应用范围逐渐扩展,其中炭基肥作为生物炭的一个重要应用方向,因其优良的缓释性能和对土壤负担小的特点,受到广泛关注。生物炭的理化性质受到制备... 生物炭是一种针对生物质能高效开发的多功能材料,随着对生物质能高效开发的关注,生物炭的应用范围逐渐扩展,其中炭基肥作为生物炭的一个重要应用方向,因其优良的缓释性能和对土壤负担小的特点,受到广泛关注。生物炭的理化性质受到制备过程中的炭化温度、炭化时间和升温速率等工艺参数的显著影响,不同炭化工艺不仅决定了生物炭的理化性质,还直接影响其作为炭基肥的缓释性能。传统的实验方法往往需要大量的时间和资源投入,因此,探索更加高效的优化方法成为了研究的热点。本研究采用了BP神经网络与遗传算法相结合的优化方法,针对咖啡壳生物炭的炭化过程中的炭化温度、炭化时间和升温速率3个关键工艺参数进行预测和优化。研究结果表明,采用BP神经网络—遗传算法优化后的炭基肥,其最佳工艺参数为炭化时间2.8 h、炭化温度780.7℃和升温速率15.1℃/min。在此工艺条件下制备的咖啡壳生物炭基肥,其7 d养分累计释放率为45.9%,表明缓释性能得到了显著提升。综上所述,本研究提出了一种基于BP神经网络和遗传算法的生物炭炭化工艺参数优化方法,能够有效提高炭基肥的缓释性能。该方法不仅为生物炭制备工艺的优化提供了新的技术路径,也为相关领域的研究提供了重要参考,对推动高性能炭基肥的发展具有积极意义。 展开更多
关键词 生物炭 bp神经网络 遗传算法 炭基肥 工艺参数优化
在线阅读 下载PDF
改进粒子群优化算法结合BP神经网络模型的水体透射光谱总磷浓度预测研究
8
作者 张国浩 王彩玲 +1 位作者 王洪伟 于涛 《光谱学与光谱分析》 北大核心 2025年第2期394-402,共9页
使用光谱数据结合融合算法对水体污染物含量进行准确检测以保护水资源已成为一个关键问题。然而,光谱数据的高维特性以及模型的不稳定常常导致预测效果不佳,无法准确的进行检测。本研究提出了一种环保和准确的方法,实现对长江水体中总... 使用光谱数据结合融合算法对水体污染物含量进行准确检测以保护水资源已成为一个关键问题。然而,光谱数据的高维特性以及模型的不稳定常常导致预测效果不佳,无法准确的进行检测。本研究提出了一种环保和准确的方法,实现对长江水体中总磷浓度含量的预测。具体而言,首先对测得的长江水质光谱数据进行最大最小归一化和均值中心化两种预处理操作,在消除不同数据量级差异的同时去除了噪声,确保了数据的一致性和可靠性。其次,为了解决光谱数据的高维度问题,采用了核主成分分析(KPCA)方法来降低数据维度并提取特征。KPCA方法通过在高维度的空间中找到一个分类平面,选出能代表原始数据99.42%信息量的前6个主成分,用于后续预测模型的训练。接着在原始粒子群算法的基础上引入了粒子初始化规则、多种群竞争策略、参数自适应更新策略、种群多样性引导策略和粒子变异机制,提高了粒子群的寻优能力,降低粒子陷入局部最优解的概率。并使用改进后的粒子群算法对BP神经网络(BPNN)中的初始化权重和参数大小进行寻优,从而加快网络的收敛效果,提高预测能力。最后,使用本研究所提出的预测模型对测试集中的样本进行总磷浓度的预测,实验结果得到R^(2)为0.975786,RMSE为0.002242,MAE为0.001612。将本模型与当前预测性能较好的其他基准模型进行预测效果的对比,本研究所提出的模型对长江水体总磷浓度预测拟合效果更好,精确度更高。在水资源保护和环境管理领域中使用光谱数据结合融合算法进行预测模型的研究和实践提供了新的思路和观点。 展开更多
关键词 光谱数据 改进粒子群优化算法 bp神经网络模型 核主成分分析(KPCA) 总磷浓度
在线阅读 下载PDF
基于混合算法改进BP神经网络的光伏发电功率预测研究
9
作者 钟安德 吴自玉 +2 位作者 谢宗效 毛玉明 杨留方 《云南民族大学学报(自然科学版)》 2025年第1期100-106,122,共8页
提出一种基于混合遗传蚁群算法(GA-ACO)改进BP神经网络的预测模型.通过皮尔逊相关系数公式求出与光伏发电输出功率相关性强的气象特征作为训练模型的输入,减少无关气象特征量对光伏输出功率的预测影响.运用遗传算法(GA)产生寻找最优参... 提出一种基于混合遗传蚁群算法(GA-ACO)改进BP神经网络的预测模型.通过皮尔逊相关系数公式求出与光伏发电输出功率相关性强的气象特征作为训练模型的输入,减少无关气象特征量对光伏输出功率的预测影响.运用遗传算法(GA)产生寻找最优参数问题的信息素分布,蚁群算法(ACO)在有初始信息素分布的条件下输出最优权阈值,让BP神经网络二次训练,输出预测值.分析结果表明,以晴天为例,GA-ACO-BP神经网络模型比传统BP神经网络模型、ACO-BP神经网络模型、GA-BP神经网络模型的预测结果相对误差分别减少了9.47%、4.83%和3.27个百分点,因此GA-ACO-BP神经网络模型用于光伏发电功率预测时具有更好的预测精度. 展开更多
关键词 光伏发电 遗传算法 蚁群算法 bp神经网络 参数优化 功率预测
在线阅读 下载PDF
基于BP神经网络和遗传算法的设备故障诊断与健康管理模型研究 被引量:1
10
作者 和征 张同静 杨小红 《制造技术与机床》 北大核心 2024年第11期9-15,共7页
针对目前设备管理存在的故障处理周期长、维护保养任务重、维修成本高的现状,构建了设备故障诊断与健康管理架构,包括设备层、感知层、数据处理及存储层、数据分析层和应用层。其中,在数据分析层,综合采用BP神经网络和遗传算法,建立了... 针对目前设备管理存在的故障处理周期长、维护保养任务重、维修成本高的现状,构建了设备故障诊断与健康管理架构,包括设备层、感知层、数据处理及存储层、数据分析层和应用层。其中,在数据分析层,综合采用BP神经网络和遗传算法,建立了设备故障诊断与健康管理模型。最后,以机电设备振动数据为例,进行设备故障诊断模型的预测结果分析,验证了该模型的可行性。研究结果表明,该模型能提高设备故障诊断正确率,具有较好的故障诊断效果;设备预测健康状态与实际健康状态的变化趋势基本保持一致,重合率大于90%。该成果可为制造企业的设备故障诊断与健康管理提供相关策略,有效排除故障问题,降低管理成本。 展开更多
关键词 设备故障诊断 设备健康管理 bp神经网络 遗传算法
在线阅读 下载PDF
小波降噪及改进遗传算法的BP神经网络在基坑变形中的组合应用
11
作者 朱志成 靳海亮 《测绘与空间地理信息》 2024年第7期169-173,共5页
以某市人民医院基坑工程为例,针对实测数据建立实测数据结合BP神经网络预测模型,小波降噪结合BP神经网络模型和小波降噪结合改进遗传算法优化的BP神经网络模型,并利用误差分析理论对基坑变形数据预测效果评价。结果表明:对比3种模型实... 以某市人民医院基坑工程为例,针对实测数据建立实测数据结合BP神经网络预测模型,小波降噪结合BP神经网络模型和小波降噪结合改进遗传算法优化的BP神经网络模型,并利用误差分析理论对基坑变形数据预测效果评价。结果表明:对比3种模型实际处理、预测数据能力,实测数据结合BP神经网络模型预测精度在1%-4%之间,小波降噪结合BP神经网络模型预测精度1%-2%之间,小波降噪结合改进遗传算法优化的BP神经网络模型预测精度在1%以内,小波降噪结合改进遗传算法优化的BP神经网络模型的预测准确率最高。针对基坑变形监测,小波降噪结合改进遗传算法优化的BP神经网络模型具有更高预测精度,可为类似工程提供实际参考。 展开更多
关键词 基坑监测 组合模型 bp神经网络 小波分析 改进遗传算法
在线阅读 下载PDF
遗传算法优化BP神经网络在水质评价中的应用 被引量:1
12
作者 宋洁 冯青 《甘肃科技》 2024年第1期33-41,共9页
通过对常规BP神经网络和遗传算法深入研究后,提出将二者结合起来,取长补短,并采用黄金分割算法确定神经网络模型隐含层节点数,借助MATLAB软件建立了遗传算法优化后的BP神经网络水质评价模型,解决了初始权值、阈值确定难,易陷入局部极值... 通过对常规BP神经网络和遗传算法深入研究后,提出将二者结合起来,取长补短,并采用黄金分割算法确定神经网络模型隐含层节点数,借助MATLAB软件建立了遗传算法优化后的BP神经网络水质评价模型,解决了初始权值、阈值确定难,易陷入局部极值以及网络收敛慢等问题,同时结合2021年黄河上游部分断面地表水环境质量评价进行了实例仿真实验,验证了该模型的可行性和准确性。遗传算法优化后的BP神经网络不仅能从全局考虑污染因子对评价结果的影响,而且解决了常规BP神经网络易陷入局部极值的问题,提高了网络的识别精度,评价结果更准确,更符合实际水体情况,在一定程度上改善了传统评价方法的片面性和主观性,对现有的水环境质量评价方法的改进起到了积极作用。 展开更多
关键词 bp神经网络 遗传算法 黄金分割算法 水环境质量评价 MATLAB
在线阅读 下载PDF
基于遗传算法优化BP神经网络的生石膏超细磨预测效果研究
13
作者 张帅 王宇斌 +2 位作者 桂婉婷 田晓珍 华开强 《化工矿物与加工》 CAS 2024年第6期9-15,共7页
为提高BP神经网络对生石膏超细磨效果的预测准确性,采用Pearson相关系数对超细石膏粉体正交试验产品细度与影响因素的显著性进行分析,并利用遗传算法优化BP神经网络对超细石膏粉体试验产品的d_(50)和d_(90)进行预测,结果表明:超细石膏... 为提高BP神经网络对生石膏超细磨效果的预测准确性,采用Pearson相关系数对超细石膏粉体正交试验产品细度与影响因素的显著性进行分析,并利用遗传算法优化BP神经网络对超细石膏粉体试验产品的d_(50)和d_(90)进行预测,结果表明:超细石膏粉体制备过程中影响细度因素的显著性由大到小依次为排矿口宽度、矿浆质量分数和超细磨时间。利用排矿口宽度和矿浆质量分数两个主要影响因素,利用遗传算法对BP神经网络进行优化,与未优化的BP神经网络相比,经遗传算法优化的BP神经网络具有更高的精度,预测误差也更小,其d_(50)平均绝对误差为0.7575,均方误差为0.7977,均方误差根为0.8931,平均绝对百分比误差为4.4838%;d_(90)平均绝对误差为0.7870,均方误差为0.8294,均方误差根为0.9107,平均绝对百分比误差为1.6658%。研究成果可为超细粉体的制备提供参考。 展开更多
关键词 遗传算法 bp神经网络 生石膏 超细磨 显著性 相关系数 预测精度
在线阅读 下载PDF
小波包与遗传算法优化BP神经网络相结合的井架钢结构损伤识别
14
作者 韩东颖 田伟 +1 位作者 黄岩 朱国庆 《机械科学与技术》 CSCD 北大核心 2024年第1期39-44,共6页
井架钢结构损伤影响其承载安全性,为快速、准确对损伤位置进行识别,提出小波包与遗传算法优化BP神经网络相结合的井架钢结构损伤识别方法。首先利用小波包处理非平稳振动信号的优良性能对原始振动信号进行特征提取,获得表征井架钢结构... 井架钢结构损伤影响其承载安全性,为快速、准确对损伤位置进行识别,提出小波包与遗传算法优化BP神经网络相结合的井架钢结构损伤识别方法。首先利用小波包处理非平稳振动信号的优良性能对原始振动信号进行特征提取,获得表征井架钢结构损伤的信息;再通过特征参数建立数据集训练并测试井架钢结构损伤识别模型,该模型结合遗传算法自身特点改善了传统BP神经网络的不足。本文识别方法不需要损伤前的数据特征进行对比,便可对损伤位置进行确定。经过对石油井架钢结构模型实验验证:该方法对井架钢结构损伤识别准确率超过90%,相对于BP网络识别准确率以及识别速度均有所提高。 展开更多
关键词 井架钢结构 损伤 小波包 遗传算法 优化的bp神经网络
在线阅读 下载PDF
基于遗传算法和BP神经网络的矿区土壤重金属含量空间分布预测
15
作者 赵萍 阮旭东 +4 位作者 刘亚风 赵思逸 孙雨 常杰 周俊 《土壤》 CAS CSCD 北大核心 2024年第4期889-896,共8页
本研究提出了一种基于遗传算法(Genetic algorithm,GA)和BP神经网络(Back propagation neural network,BPNN)的复合模型——GABP模型,以安徽省池州市某矿区及其周边为研究区,预测了土壤中p H和7种重金属元素(Cd、Pb、Cr、Cu、Ni、Hg、As... 本研究提出了一种基于遗传算法(Genetic algorithm,GA)和BP神经网络(Back propagation neural network,BPNN)的复合模型——GABP模型,以安徽省池州市某矿区及其周边为研究区,预测了土壤中p H和7种重金属元素(Cd、Pb、Cr、Cu、Ni、Hg、As)含量的空间分布,并与BPNN和反比距离权重法(Inverse distance weighting,IDW)进行了比较。研究结果表明:受采矿活动影响,研究区土壤p H和重金属含量呈显著的空间分异性;GABP复合模型的数据扩增能够有效弥补BPNN对样本数量的依赖,同时结合了地理位置和高程属性,精度评价结果显示GABP模型的平均R^(2)、r、RMSE、MAE分别是IDW和BPNN的3.03倍、2.56倍,2.93倍、2.39倍,0.85倍、0.61倍,0.79倍、0.62倍,预测精度更高。模型解决了传统空间插值方法结果中可能出现负值和边界无法插值的问题,为土壤重金属含量空间分布预测提供了一种新方法。 展开更多
关键词 遗传算法 bp神经网络 GAbp模型 空间分布预测 重金属含量
在线阅读 下载PDF
基于遗传BP神经网络的Al/Fe_(2)O_(3)铝热剂热力学性能预测方法研究
16
作者 薛美晨 薛园园 +3 位作者 胡耀立 欧阳的华 彭鹏 罗彬杰 《火工品》 北大核心 2025年第2期45-52,共8页
为了探索Al/Fe_(2)O_(3)铝热剂热力学性能的预测方法,采用遗传算法对BP神经网络的初始权值和阈值进行优化,利用HSC Chemistry软件计算了不同温度及配比下的Al/Fe_(2)O_(3)吉布斯自由能及反应焓变,以此作为基础数据,建立了基于遗传BP神... 为了探索Al/Fe_(2)O_(3)铝热剂热力学性能的预测方法,采用遗传算法对BP神经网络的初始权值和阈值进行优化,利用HSC Chemistry软件计算了不同温度及配比下的Al/Fe_(2)O_(3)吉布斯自由能及反应焓变,以此作为基础数据,建立了基于遗传BP神经网络的Al/Fe_(2)O_(3)铝热剂燃烧热力学性能预测模型,分别得到了124组Al/Fe_(2)O_(3)吉布斯自由能和化学反应焓变的训练集样本数据及31组预测集样本数据,并计算了模型误差。结果表明:该模型预测的Al/Fe_(2)O_(3)吉布斯自由能及反应焓变的测试集均方根误差(RMSE)分别为0.499 1和0.702 7,平均绝对误差(MAE)分别为0.533 2和0.4411,决定性系数R^(2)分别为0.982 7和0.988 5;遗传BP神经网络能够用于Al/Fe_(2)O_(3)铝热剂热力学性能的预测。 展开更多
关键词 铝热剂 吉布斯自由能 反应焓变 遗传算法 bp神经网络
在线阅读 下载PDF
基于改进BP神经网络的烟草收获机械故障诊断研究 被引量:2
17
作者 戴欧阳 胡洪林 《农机化研究》 北大核心 2025年第4期70-76,共7页
烟草收获机械是烟草生产中的重要技术支撑,是提高收获效率的重要保证,但由于烟草收获机械内部结构较为复杂,在使用过程中极易造成机械运行故障。随着大数据及传感器技术的快速发展,基于人工神经网络模型实现机械故障的预测与诊断成为提... 烟草收获机械是烟草生产中的重要技术支撑,是提高收获效率的重要保证,但由于烟草收获机械内部结构较为复杂,在使用过程中极易造成机械运行故障。随着大数据及传感器技术的快速发展,基于人工神经网络模型实现机械故障的预测与诊断成为提高烟草收获机械工作效率的重要技术。目前,主要以BP神经网络模型应用较为广泛,但在模型构建中预测效率低、鲁棒性强。针对以上问题,提出一种改进BP神经网络模型,以烟草收获机械中的齿轮故障诊断为研究对象,构建基于GA-BP神经网络模型的烟草收获机械齿轮故障诊断模型,并通过选取齿轮磨损、胶合、裂纹、断齿和正常齿轮的信号进行试验验证。结果表明:改进后的BP神经网络模型MAPE仅为0.87%,RMSE为1.12,MAE为0.92,MSE为1.19,满足烟草收获生产的实际需要,在模型算法与计算速度方面都得到了很大的提高。 展开更多
关键词 烟草收获 机械故障 遗传算法 bp神经网络 优化模型
在线阅读 下载PDF
基于遗传算法的BP神经网络在轻质路基沉降预测中的应用 被引量:6
18
作者 沈璐 陈修和 +1 位作者 陶文斌 李健斌 《广西科技大学学报》 CAS 2024年第2期32-39,共8页
为更好地掌握轻质路基施工过程中的沉降变形情况,选取宁芜保通线部分轻质路基沉降监测数据,在BP(back propagation)神经网络模型的基础上,采用遗传算法对其进行优化,并将优化后的模型应用于轻质路基沉降预测。结果表明:遗传算法优化的B... 为更好地掌握轻质路基施工过程中的沉降变形情况,选取宁芜保通线部分轻质路基沉降监测数据,在BP(back propagation)神经网络模型的基础上,采用遗传算法对其进行优化,并将优化后的模型应用于轻质路基沉降预测。结果表明:遗传算法优化的BP神经网络在全局搜索能力和收敛能力方面具有明显优势;在轻质路基沉降预测任务中,多数预测结果的相对误差集中在更低的范围内,监测点1和监测点2预测结果的模型评价指标MAE、RMSE、MAPE分别为0.017 mm、0.021 mm、0.679%和0.013 mm、0.016 mm、1.395%,预测结果拟合程度高,误差小,模型泛化能力强。因此,遗传算法优化的BP神经网络的沉降预测模型具有可靠的预测效果与预测精度,在实际工程中可行性较高,可作为轻质路基沉降预测和预警的一种辅助手段。 展开更多
关键词 轻质路基 地基沉降 预测 遗传算法 bp神经网络
在线阅读 下载PDF
基于BP神经网络和遗传算法的智能配煤系统开发与应用 被引量:1
19
作者 徐凌霄 张保忠 +3 位作者 何有林 朱春梅 郑超 田永胜 《煤化工》 CAS 2024年第4期6-11,共6页
针对炼焦煤品种繁多,同一矿点来煤的煤质波动较大,混煤现象严重的问题,宁波钢铁有限公司通过搭建煤焦数据库,开发智能配煤系统,实现全流程监测煤焦数据变化。智能配煤系统结合历史生产数据分析提取影响焦炭质量的关键指标,采用多元线性... 针对炼焦煤品种繁多,同一矿点来煤的煤质波动较大,混煤现象严重的问题,宁波钢铁有限公司通过搭建煤焦数据库,开发智能配煤系统,实现全流程监测煤焦数据变化。智能配煤系统结合历史生产数据分析提取影响焦炭质量的关键指标,采用多元线性回归和BP神经网络的建模方法,建立焦炭质量关键指标预测模型。同时,智能配煤系统结合焦炭质量预测模型、配煤专家系统和炼焦单种煤库存信息,采用优化后的遗传算法进行配煤模型的构建,从而实现快速实时调整配比、合理利用炼焦煤资源、稳定焦炭质量并且有效降低炼焦成本的目的。智能配煤系统运行稳定,实现了对炼焦煤资源的合理利用和降本增效的目的。 展开更多
关键词 bp神经网络 遗传算法 焦炭质量预测模型 智能配煤系统 煤焦数据库
在线阅读 下载PDF
遗传算法优化BP神经网络的高速信号状态判断 被引量:1
20
作者 万超 谢锐 《中北大学学报(自然科学版)》 CAS 2024年第5期695-705,共11页
针对引信控制系统高速信号状态判断误差大和BP(Back Propagation,BP)神经网络在状态判断过程中存在精度差、易陷入局部最优解的缺点,利用其它寻优算法来改善BP神经网络的缺点以减小高速信号状态判断的误差。本文利用遗传算法优化BP神经... 针对引信控制系统高速信号状态判断误差大和BP(Back Propagation,BP)神经网络在状态判断过程中存在精度差、易陷入局部最优解的缺点,利用其它寻优算法来改善BP神经网络的缺点以减小高速信号状态判断的误差。本文利用遗传算法优化BP神经网络来构建模型,以引信的高速信号时间和电压为输入指标建立了分类模型,将其用于高速信号状态的判断来提高识别准确率,加快收敛速度,降低误差,并根据高速信号来了解引信控制系统在每一时刻处于哪种状态从而判断系统是否正常可靠。仿真分析结果表明,本文方法在引信的高速信号状态判断方面具有识别结果优、收敛速度快、误差小的特点,其正确率达到了99.6%,优于BP神经网络的88.6%和卷积神经网络的98.7%;同时,平均绝对误差降低至0.01210,均方误差降低至0.04368,均方根误差降低至0.20901,进化代数为23代,优于BP神经网络的0.16842,0.31985,0.56475,51代,卷积神经网络的0.02263,0.0605,0.24597,25代。连续实验结果表明,改进后的模型鲁棒性更优,威尔克森秩和检验结果也表明,改进后的模型比BP神经网络和卷积神经网络的识别效果更优,有更好的泛化能力,模型满足了高速信号状态判断要求。 展开更多
关键词 高速信号 状态判断 bp神经网络 遗传算法
在线阅读 下载PDF
上一页 1 2 164 下一页 到第
使用帮助 返回顶部