Production o f aromatics from lignin has attracted much attention. Because of the coexistence of C-O and C-C bonds and their complex combinations in the lignin macromolecular network, a plausible roadmap for de...Production o f aromatics from lignin has attracted much attention. Because of the coexistence of C-O and C-C bonds and their complex combinations in the lignin macromolecular network, a plausible roadmap for developing a lignin catalytic decomposition process could be developed by exploring the transformation mechanisms of various model compounds. Herein, decomposition of a lignin model compound, 2-phenoxyacetophenone (2-PAP), was investigated over several ce-sium-exchanged polyoxometalate (Cs-POM) catalysts. Decomposition of 2-PAP can follow two dif-ferent mechanisms: an active hydrogen transfer mechanism or an oxonium cation mechanism. The mechanism for most reactions depends on the competition between the acidity and redox proper-ties of the catalysts. The catalysts of POMs perform the following functions: promoting active hy-drogen liberated from ethanol and causing formation of and then temporarily stabilizing oxonium cations from 2-PAP. The use of Cs-PMo, which with strong redox ability, enhances hydrogen libera-tion and promotes liberated hydrogen transfer to the reaction intermediates. As a consequence, complete conversion of 2-PAP (〉99%) with excellent selectivities to the desired products (98.6% for phenol and 91.1% for acetophenone) can be achieved.展开更多
A formula was proposed to calculate the distribution of metal ions quantitatively in chemical reaction system forming hydroxide where precipitation and complex are formed together. The effects of some factors on forma...A formula was proposed to calculate the distribution of metal ions quantitatively in chemical reaction system forming hydroxide where precipitation and complex are formed together. The effects of some factors on formation of precipitation and complex were investigated, and the corresponding precipitation rates of zinc, iron (III), aluminum, copper and magnesium were calculated. As a result, it shows that the proposed formula is reliable. By the proposed formula, the existence state of metal ions in hydroxides reaction system with any metal ions can be well described and the effects of some factors on the distribution of metal ions were determined.展开更多
Oxygen evolution reactions(OERs)as core components of energy conversion and storage technology systems,such as water splitting and rechargeable metal–air batteries,have attracted considerable attention in recent year...Oxygen evolution reactions(OERs)as core components of energy conversion and storage technology systems,such as water splitting and rechargeable metal–air batteries,have attracted considerable attention in recent years.Transition metal compounds,particularly layered double hydroxides(LDHs),are considered as the most promising electrocatalysts owing to their unique two-dimensional layer structures and tunable components.However,heir poor intrinsic electrical conductivities and the limited number of active sites hinder their performances.The regulation of the electronic structure is an effective approach to improve the OER activity of LDHs,including cationic and anionic regulation,defect engineering,regulation of intercalated anions,and surface modifications.In this review,we summarize recent advances in the regulation of the electronic structures of LDHs used as electrocatalysts in OERs.In addition,we discuss the effects of each regulation type on OER activities.This review is expected to shed light on the development and design of effective OER electrocatalysts by summarizing various electronic structure regulation pathways and the effects on their catalytic performances.展开更多
Metal hydroxides (MAH) consisting of magnesium hydroxide and aluminum hydroxide with a mass ratio of 1:2 were surface-modified by y-diethoxyphosphorous ester propyldiethoxymethylsilane, boric acid and diphenylsilan...Metal hydroxides (MAH) consisting of magnesium hydroxide and aluminum hydroxide with a mass ratio of 1:2 were surface-modified by y-diethoxyphosphorous ester propyldiethoxymethylsilane, boric acid and diphenylsilanediol in xylene under dibutyl tin dilaurate catalyst at 140 ℃. Phosphorus, silicon and boron elements covalently bonded to metal hydroxide particles were detected by X-ray photoelectron spectroscopy. The degradation behavior of the surface-modified MAH was characterized by thermogravimetric analysis. The results show that linear low density polyethylene (LLDPE) composite, filled with 50% (mass fraction) of MAH modified by 5.0% (mass fraction) of modifiers, passes the V-0 rating of UL-94 test and shows the limited oxygen index of 34%, and its heat release rate and average effective heat combustion in a cone calorimeter measurement decrease obviously; The mechanical properties of MAH can be improved by surface-modification. The uniform dispersion of particles and strong interfacial bonding between particles and matrix are obtained.展开更多
基金supported by the National Key Basic Research Program of China(973 program,2013CB934101)National Natural Science Foundation of China(21433002,21573046)+1 种基金China Postdoctoral Science Foundation(2016M601492)International Science and Technology Cooperation Projects of Guangxi(15104001-5)~~
文摘Production o f aromatics from lignin has attracted much attention. Because of the coexistence of C-O and C-C bonds and their complex combinations in the lignin macromolecular network, a plausible roadmap for developing a lignin catalytic decomposition process could be developed by exploring the transformation mechanisms of various model compounds. Herein, decomposition of a lignin model compound, 2-phenoxyacetophenone (2-PAP), was investigated over several ce-sium-exchanged polyoxometalate (Cs-POM) catalysts. Decomposition of 2-PAP can follow two dif-ferent mechanisms: an active hydrogen transfer mechanism or an oxonium cation mechanism. The mechanism for most reactions depends on the competition between the acidity and redox proper-ties of the catalysts. The catalysts of POMs perform the following functions: promoting active hy-drogen liberated from ethanol and causing formation of and then temporarily stabilizing oxonium cations from 2-PAP. The use of Cs-PMo, which with strong redox ability, enhances hydrogen libera-tion and promotes liberated hydrogen transfer to the reaction intermediates. As a consequence, complete conversion of 2-PAP (〉99%) with excellent selectivities to the desired products (98.6% for phenol and 91.1% for acetophenone) can be achieved.
基金Project (51304047) supported by the National Natural Science Foundation of ChinaProject (20131037) supported by Science and Technology Foundation of Liaoning Province,China
文摘A formula was proposed to calculate the distribution of metal ions quantitatively in chemical reaction system forming hydroxide where precipitation and complex are formed together. The effects of some factors on formation of precipitation and complex were investigated, and the corresponding precipitation rates of zinc, iron (III), aluminum, copper and magnesium were calculated. As a result, it shows that the proposed formula is reliable. By the proposed formula, the existence state of metal ions in hydroxides reaction system with any metal ions can be well described and the effects of some factors on the distribution of metal ions were determined.
文摘Oxygen evolution reactions(OERs)as core components of energy conversion and storage technology systems,such as water splitting and rechargeable metal–air batteries,have attracted considerable attention in recent years.Transition metal compounds,particularly layered double hydroxides(LDHs),are considered as the most promising electrocatalysts owing to their unique two-dimensional layer structures and tunable components.However,heir poor intrinsic electrical conductivities and the limited number of active sites hinder their performances.The regulation of the electronic structure is an effective approach to improve the OER activity of LDHs,including cationic and anionic regulation,defect engineering,regulation of intercalated anions,and surface modifications.In this review,we summarize recent advances in the regulation of the electronic structures of LDHs used as electrocatalysts in OERs.In addition,we discuss the effects of each regulation type on OER activities.This review is expected to shed light on the development and design of effective OER electrocatalysts by summarizing various electronic structure regulation pathways and the effects on their catalytic performances.
基金Project(20574020) supported by the National Natural Science Foundation of ChinaProject(20061001) supported by the Opening Project of the Key Laboratory of Polymer Processing Engineering, Ministry of Education, ChinaProject (20060106-2) supported by Guangdong Key Projects
文摘Metal hydroxides (MAH) consisting of magnesium hydroxide and aluminum hydroxide with a mass ratio of 1:2 were surface-modified by y-diethoxyphosphorous ester propyldiethoxymethylsilane, boric acid and diphenylsilanediol in xylene under dibutyl tin dilaurate catalyst at 140 ℃. Phosphorus, silicon and boron elements covalently bonded to metal hydroxide particles were detected by X-ray photoelectron spectroscopy. The degradation behavior of the surface-modified MAH was characterized by thermogravimetric analysis. The results show that linear low density polyethylene (LLDPE) composite, filled with 50% (mass fraction) of MAH modified by 5.0% (mass fraction) of modifiers, passes the V-0 rating of UL-94 test and shows the limited oxygen index of 34%, and its heat release rate and average effective heat combustion in a cone calorimeter measurement decrease obviously; The mechanical properties of MAH can be improved by surface-modification. The uniform dispersion of particles and strong interfacial bonding between particles and matrix are obtained.