Headphones with an integrated active noise cancellation system have been increasingly introduced to the consumer market in recent years. When exposing the human ear to active noise sources in this striking distance, t...Headphones with an integrated active noise cancellation system have been increasingly introduced to the consumer market in recent years. When exposing the human ear to active noise sources in this striking distance, the ensuring of a safe sound pressure level is vital. In feedback systems, this is coupled with the stability of the closed control loop; stable controller design is thus essential. However, changes in the control path during run-time can cause the stable control system to become unstable, resulting in an overdrive of the speakers in the headphones. This paper proposes a method, which enables the real-time analysis of the current system state and if necessary stabilizes the closed loop while maintaining the active noise reduction. This is achieved by estimating and evaluating the open loop behavior with an adaptive filter and subsequently limiting the controller gain in respect to the stability margin.展开更多
This paper gives details about the controller design that aims to stabilize the novel twinrotor flying robot, Toruk. Toruk is an experimental test bench to study center of gravity steering, effect of the location of t...This paper gives details about the controller design that aims to stabilize the novel twinrotor flying robot, Toruk. Toruk is an experimental test bench to study center of gravity steering, effect of the location of the center of gravity, controller design and implementation, etc. Physical components are also briefly discussed in this paper. Attitude dynamics of the system is inherently unstable. It is stabilized by a regulator. In addition, an observer is designed and utilized to estimate the unmeasured states. Thrust force generated by the propulsion unit is estimated by using the identified mathematical model of the unit. An experimental setup is employed to identify the mathematical model that expresses the relation between the applied input voltage to the propulsion unit and thrust produced by the propeller. Mathematical model for the attitude dynamics of Toruk is built. Then controllability and observability analysis are carried out for the system. Dynamic compensator composed of a state observer and a regulator, is designed on the mathematical model. Physical implementation on the system will be performed.展开更多
This paper investigates parallel simultaneous stabilization (PSS) of a set of multi-input nonlinear Port-Controlled Hamiltonian (PCH) systems subject to actuator saturation (AS), and proposes a number of results...This paper investigates parallel simultaneous stabilization (PSS) of a set of multi-input nonlinear Port-Controlled Hamiltonian (PCH) systems subject to actuator saturation (AS), and proposes a number of results on the design of PSS controllers for the PCH systems with AS. Firstly, the case of two PCH systems with AS is studied. Exploring the special property of the saturation nonlinearity and the structural properties of dissipative Hamiltonian system, the two systems are combined to generate an augmented PCH system, with which some results on the control design are then obtained. When there are external disturbances in the two systems, a robust PSS controller is designed for the systems. Secondly, the case of more than two PCH systems with AS is investigated, and several new results are proposed for the PSS problem. Finally, two illustrative examples are presented to show that the stabilization controllers obtained in this paper work very well.展开更多
The dynamic linear state feedback control problem is addressed for a class of nonlinear systems subject to time-delay.First,using the dynamic change of coordinates,the problem of global state feedback stabilization is...The dynamic linear state feedback control problem is addressed for a class of nonlinear systems subject to time-delay.First,using the dynamic change of coordinates,the problem of global state feedback stabilization is solved for a class of time-delay systems under a type of nonhomogeneous growth conditions.With the aid of an appropriate Lyapunov-Krasovskii functional and the adaptive strategy used in coordinates,the closed-loop system can be globally asymptotically stabilized by the dynamic linear state feedback controller.The growth condition in perturbations are more general than that in the existing results.The correctness of the theoretical results are illustrated with an academic simulation example.展开更多
The visual serving stabilization for a kind of nonholonomic mobile robots with uncalibrated camera parameters is investigated based on the visual feedback and the state and input transforma- tions. The authors obtain ...The visual serving stabilization for a kind of nonholonomic mobile robots with uncalibrated camera parameters is investigated based on the visual feedback and the state and input transforma- tions. The authors obtain a new uncertain model of the nonholonomic kinematic system in the image plane, which is a chained form with uncalibrated visual parameters, from the camera robotic system. A new time varying feedback controller is proposed for the exponential stabilization of the nonholonomic chained system with unknown parameters by using state-scaling and switching technique. The exponential stability of the closed loop system is rigorously proved. Simulation results demonstrate the effectiveness of the proposed methods.展开更多
This contribution proposes a novel neural-network-based control approach to stabilize a nonlinear aeroelastic wing section. With the prerequisite that all the states of the system are available, the proposed controlle...This contribution proposes a novel neural-network-based control approach to stabilize a nonlinear aeroelastic wing section. With the prerequisite that all the states of the system are available, the proposed controller requires no comprehensive information about structural nonlinearity of the wing section. Furthermore, the proposed control approach requires no human intervention of designing goal dynamics and formulating control input function, which is difficult to be realized by the typical neural-network-based control following an inverse control scheme. Simulation results show that the proposed controller can stabilize the aeroelastic system with different nonlinearities.展开更多
基金Supported by National Natural Science Foundation of China(61374028)2012 Academic and Technical Leader Candidate Project for Young and Middle-Aged Persons of Yunnan Province(2012HB011)
文摘Headphones with an integrated active noise cancellation system have been increasingly introduced to the consumer market in recent years. When exposing the human ear to active noise sources in this striking distance, the ensuring of a safe sound pressure level is vital. In feedback systems, this is coupled with the stability of the closed control loop; stable controller design is thus essential. However, changes in the control path during run-time can cause the stable control system to become unstable, resulting in an overdrive of the speakers in the headphones. This paper proposes a method, which enables the real-time analysis of the current system state and if necessary stabilizes the closed loop while maintaining the active noise reduction. This is achieved by estimating and evaluating the open loop behavior with an adaptive filter and subsequently limiting the controller gain in respect to the stability margin.
文摘This paper gives details about the controller design that aims to stabilize the novel twinrotor flying robot, Toruk. Toruk is an experimental test bench to study center of gravity steering, effect of the location of the center of gravity, controller design and implementation, etc. Physical components are also briefly discussed in this paper. Attitude dynamics of the system is inherently unstable. It is stabilized by a regulator. In addition, an observer is designed and utilized to estimate the unmeasured states. Thrust force generated by the propulsion unit is estimated by using the identified mathematical model of the unit. An experimental setup is employed to identify the mathematical model that expresses the relation between the applied input voltage to the propulsion unit and thrust produced by the propeller. Mathematical model for the attitude dynamics of Toruk is built. Then controllability and observability analysis are carried out for the system. Dynamic compensator composed of a state observer and a regulator, is designed on the mathematical model. Physical implementation on the system will be performed.
基金This research is supported by the National Nature Science Foundation of China under Grant Nos. 60774009, 61074068, 61034007, the Research Fund the Doctoral Program of Chinese Higher Education under Grant No. G200804220028, the Independent Innovation Foundation of Shandong University under Grant No. 2010TS078, and the Nature Science Foundation of Shandong Province under Grant No. ZR2010FM013.
文摘This paper investigates parallel simultaneous stabilization (PSS) of a set of multi-input nonlinear Port-Controlled Hamiltonian (PCH) systems subject to actuator saturation (AS), and proposes a number of results on the design of PSS controllers for the PCH systems with AS. Firstly, the case of two PCH systems with AS is studied. Exploring the special property of the saturation nonlinearity and the structural properties of dissipative Hamiltonian system, the two systems are combined to generate an augmented PCH system, with which some results on the control design are then obtained. When there are external disturbances in the two systems, a robust PSS controller is designed for the systems. Secondly, the case of more than two PCH systems with AS is investigated, and several new results are proposed for the PSS problem. Finally, two illustrative examples are presented to show that the stabilization controllers obtained in this paper work very well.
基金supported by US National Science Foundation under Grant No.HRD-0932339the National Natural Science Foundation of China under Grant Nos.61374038,61374050,61273119,61174076+1 种基金the Natural Science Foundation of Jiangsu Province of China under Grant No.BK2011253Research Fund for the Doctoral Program of Higher Education of China under Grant No.20110092110021
文摘The dynamic linear state feedback control problem is addressed for a class of nonlinear systems subject to time-delay.First,using the dynamic change of coordinates,the problem of global state feedback stabilization is solved for a class of time-delay systems under a type of nonhomogeneous growth conditions.With the aid of an appropriate Lyapunov-Krasovskii functional and the adaptive strategy used in coordinates,the closed-loop system can be globally asymptotically stabilized by the dynamic linear state feedback controller.The growth condition in perturbations are more general than that in the existing results.The correctness of the theoretical results are illustrated with an academic simulation example.
基金supported by the National Science Foundation under Grant No.60874002Key Project of Shanghai Education Committee under Grant No.09ZZ158+1 种基金Key Discipline of Shanghai under Grant No.S30501Doctoral Fund of Shandong University of Technology under Grant No.411016
文摘The visual serving stabilization for a kind of nonholonomic mobile robots with uncalibrated camera parameters is investigated based on the visual feedback and the state and input transforma- tions. The authors obtain a new uncertain model of the nonholonomic kinematic system in the image plane, which is a chained form with uncalibrated visual parameters, from the camera robotic system. A new time varying feedback controller is proposed for the exponential stabilization of the nonholonomic chained system with unknown parameters by using state-scaling and switching technique. The exponential stability of the closed loop system is rigorously proved. Simulation results demonstrate the effectiveness of the proposed methods.
文摘This contribution proposes a novel neural-network-based control approach to stabilize a nonlinear aeroelastic wing section. With the prerequisite that all the states of the system are available, the proposed controller requires no comprehensive information about structural nonlinearity of the wing section. Furthermore, the proposed control approach requires no human intervention of designing goal dynamics and formulating control input function, which is difficult to be realized by the typical neural-network-based control following an inverse control scheme. Simulation results show that the proposed controller can stabilize the aeroelastic system with different nonlinearities.