期刊文献+
共找到2,649篇文章
< 1 2 133 >
每页显示 20 50 100
基于时间卷积和长短期记忆网络的短期云资源预测模型
1
作者 陈基漓 李海军 谢晓兰 《科学技术与工程》 北大核心 2025年第7期2856-2864,共9页
随着容器云技术的不断深入发展,通过预测分析云资源请求的整体趋势及高峰期,对于容器云资源的高效利用和合理分配具有重要意义。利用深度学习技术进行负载预测已经成为解决容器云资源利用率不平衡的关键技术。针对目前负载预测的单一模... 随着容器云技术的不断深入发展,通过预测分析云资源请求的整体趋势及高峰期,对于容器云资源的高效利用和合理分配具有重要意义。利用深度学习技术进行负载预测已经成为解决容器云资源利用率不平衡的关键技术。针对目前负载预测的单一模型和组合模型所存在的预测精度低以及捕获序列特征不充分问题,提出基于时间卷积和长短期记忆网络(temporal convolutional network-long short-term memory, TCN-LSTM)的短期云资源组合预测模型,组合模型中的空洞卷积在不减少特征尺寸的情况下增加感受野获取更长久的时间序列特征,其中残差网络可以跨层传递信息以加快网络的收敛,所获取的时间序列特征可有效提高LSTM的预测精度。利用阿里巴巴公开数据集的进行预测,实验表明所提出的模型与单一的预测模型以及其他组合模型进行对比分析,误差指标-平均绝对误差(mean absolute error, MAE)降低8%~13.7%,均方根误差(root mean squared error, RMSE)降低9.8%~13.1%,证明所提模型的有效性。 展开更多
关键词 容器云 云资源预测 间卷积网络(TCN) 长短记忆网络(lstm)
在线阅读 下载PDF
时序记忆增强的CNN-LSTM滚动轴承故障诊断方法
2
作者 陈永展 曲建岭 +1 位作者 王小飞 王元鑫 《噪声与振动控制》 北大核心 2025年第1期105-111,共7页
针对CNN-LSTM网络处理小样本含噪数据时诊断误差较大的问题,提出一维卷积神经网络(One Dimensional-Convolutional Neural Network,1D-CNN)和长短时记忆网络(Long Short-Term Memory,LSTM)相融合的时序记忆增强故障诊断模型(CNN-LSTM-ti... 针对CNN-LSTM网络处理小样本含噪数据时诊断误差较大的问题,提出一维卷积神经网络(One Dimensional-Convolutional Neural Network,1D-CNN)和长短时记忆网络(Long Short-Term Memory,LSTM)相融合的时序记忆增强故障诊断模型(CNN-LSTM-time Sequential Memory Enhancement,CNN-LSTM-TSME)。该模型首先通过CNN自适应提取时序数据的故障特征,其次通过对LSTM的输入数据进行递推平均滤波,增强对时序含噪数据的处理能力,再次通过耦合LSTM单元的遗忘门和输入门,将两者分别与记忆单元相连,提高时序数据的记忆能力,从而更加适合于小样本数据的学习,最后利用全连接层后的Softmax函数实现多轴承故障状态的识别。基于凯斯西储大学滚动轴承数据集的实验表明,该模型对于标准数据和加噪数据的平均准确率均在95%以上,明显优于CNN-LSTM和其他现有模型,具有较高的诊断精度和泛化性能。 展开更多
关键词 故障诊断 滚动轴承 间序列 卷积神经网络 长短记忆网络
在线阅读 下载PDF
基于长短时记忆神经网络模型的空调能源消耗预测研究
3
作者 王雨薇 任禹丞 +3 位作者 郑杨 胡涵天 吴含青 刘京易 《能源与环保》 2025年第3期205-211,共7页
随着全球气候变化和能源资源的日益紧张,工业园区能耗的管理和优化变得尤为重要。在工业园区能耗中,空调系统所占比例巨大,对其能耗进行准确预测和有效控制具有重要意义。为此,提出了一种基于长短时记忆神经网络模型的空调能耗预测方法... 随着全球气候变化和能源资源的日益紧张,工业园区能耗的管理和优化变得尤为重要。在工业园区能耗中,空调系统所占比例巨大,对其能耗进行准确预测和有效控制具有重要意义。为此,提出了一种基于长短时记忆神经网络模型的空调能耗预测方法,用于实现工业园区中使用不同规则划分的空调节能潜力测算。首先,通过斯皮尔曼相关系数筛选合适的空调能耗指标作为预测模型的输入参数;然后,采用神经网络模型来进行预测,空调的能耗指标包括室内环境参数、室外环境参数、设备运行参数、空调历史能耗数据4部分;最后,使用一个算例验证了所提出的空调能耗预测方法的预测性能。结果表明,该方法不仅对空调系统的长期能耗进行了考虑,而且能够预测其在若干个短期控制步长的能耗,来实现能耗的实时预测与控制。 展开更多
关键词 工业园区空调 能源消耗预测 相关性分析 长短记忆神经网络
在线阅读 下载PDF
基于长短时记忆网络和生成对抗网络的VRB储能系统虚假数据注入攻击检测 被引量:4
4
作者 陆鹏 付华 卢万杰 《电网技术》 EI CSCD 北大核心 2024年第1期383-393,共11页
随着信息技术的不断发展,直流微电网储能系统已成为深度融合的信息物理系统,而精确的荷电状态估计对储能系统的实时监测和安全稳定运行至关重要。针对全钒液流电池(vanadium redox flow battery,VRB)储能系统荷电状态估计中,由虚假数据... 随着信息技术的不断发展,直流微电网储能系统已成为深度融合的信息物理系统,而精确的荷电状态估计对储能系统的实时监测和安全稳定运行至关重要。针对全钒液流电池(vanadium redox flow battery,VRB)储能系统荷电状态估计中,由虚假数据注入攻击导致的异常数据检测问题,提出一种基于长短时记忆网络和生成对抗网络的检测方法。首先,建立了VRB等效电路模型和虚假数据注入攻击模型;然后,通过训练长短时记忆网络和生成对抗网络组成的循环网络,将长短时记忆神经网络嵌入生成对抗网络框架作为生成器和鉴别器来分析电池时序数据,通过判别网络中的判别损失误差和生成网络中的重构残差得到异常损失进行综合判断;最后,以CEC-VRB-5kW型号电池为对象,并构造不同强度的虚假数据攻击进行实验,验证检测方法的准确性与可行性。结果表明,与经典循环神经网络、随机森林、自编码器、长短时记忆网络检测方法进行对比,所提方法具有较高的检测精度,在VRB储能系统荷电状态估计中能够有效辨识虚假数据攻击。 展开更多
关键词 长短记忆网络 生成对抗网络 储能系统 SOC估计 虚假数据注入攻击
在线阅读 下载PDF
基于双重分解和双向长短时记忆网络的中长期负荷预测模型 被引量:5
5
作者 王继东 于俊源 孔祥玉 《电网技术》 EI CSCD 北大核心 2024年第8期3418-3426,I0121-I0126,共15页
针对中长期电力负荷序列噪声含量高、难以直接提取序列周期规律从而影响预测精度的问题,提出了一种基于完全自适应噪声集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和奇异谱分析(sin... 针对中长期电力负荷序列噪声含量高、难以直接提取序列周期规律从而影响预测精度的问题,提出了一种基于完全自适应噪声集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和奇异谱分析(singular spectrum analysis,SSA)双重分解的双向长短时记忆网络(bidirectional long and short time memory,BiLSTM)预测模型。首先,采用CEEMDAN对历史负荷进行分解,以得到若干个周期规律更为清晰的子序列;再利用多尺度熵(multiscale entropy,MSE)计算所有子序列的复杂程度,根据不同时间尺度上的样本熵值将相似的子序列重构聚合;然后,利用SSA去噪的功能,对高度复杂的新序列进行二次分解,去除序列中的噪声并提取更为主要的规律,从而进一步提高中长序列预测精度;再将得到的最终一组子序列输入BiLSTM进行预测;最后,考虑到天气、节假日等外部因素对电力负荷的影响,提出了一种误差修正技术。选取了巴拿马某地区的用电负荷进行实验,实验结果表明,经过双重分解可以将均方根误差降低87.4%;预测未来一年的负荷序列时,采用的BiLSTM模型将拟合系数最高提高2.5%;所提出的误差修正技术可将均方根误差降低9.7%。 展开更多
关键词 中长期负荷预测 二次分解 多尺度熵 奇异谱分析 双向长短记忆网络 长序列处理
在线阅读 下载PDF
基于长短时记忆网络的山区中小流域降雨径流模拟 被引量:1
6
作者 张锦堂 任明磊 +4 位作者 李京兵 唐榕 钟小燕 王刚 王玉丽 《水电能源科学》 北大核心 2024年第8期33-37,共5页
洪水预报是流域防洪减灾的重要非工程措施之一。目前我国中小河流暴雨洪水灾害频发,但应对短历时强降雨的洪水预报能力仍不强。以安徽省东部山区中小流域为研究对象,引入长短时记忆网络建立流域降雨径流模型,探讨其在山区中小流域的洪... 洪水预报是流域防洪减灾的重要非工程措施之一。目前我国中小河流暴雨洪水灾害频发,但应对短历时强降雨的洪水预报能力仍不强。以安徽省东部山区中小流域为研究对象,引入长短时记忆网络建立流域降雨径流模型,探讨其在山区中小流域的洪水模拟效果。结果表明,考虑降雨输入的空间差异可提升深度学习模型降雨径流模拟预测性能,且长短时记忆网络能够取得优于传统人工神经网络的精度;长短时记忆网络模型有效建立了流域降雨与径流间的复杂非线性关系,模型在所选流域内场次洪水的峰值模拟效果较好,训练、测试集场次洪水峰值合格率均在90%以上;长短时记忆网络内部结构特征与流域水文过程具有较好的相似性,对山区中小流域暴雨洪水非线性关系拟合效果突出。 展开更多
关键词 山丘区 长短记忆网络 中小河流 降雨径流模拟
在线阅读 下载PDF
基于Bi‑LSTM和时序注意力的异常心音检测
7
作者 卢官明 蔡亚宁 +3 位作者 卢峻禾 戚继荣 王洋 赵宇航 《南京邮电大学学报(自然科学版)》 北大核心 2025年第1期12-20,共9页
异常心音检测是对心脏病进行初步诊断的一种有效而方便的方法。为提升异常心音的检测性能,提出了一种基于双向长短时记忆网络(Bi⁃directional Long Short⁃Term Memory,Bi⁃LSTM)和时序注意力的异常心音检测算法。首先对心音片段进行分帧... 异常心音检测是对心脏病进行初步诊断的一种有效而方便的方法。为提升异常心音的检测性能,提出了一种基于双向长短时记忆网络(Bi⁃directional Long Short⁃Term Memory,Bi⁃LSTM)和时序注意力的异常心音检测算法。首先对心音片段进行分帧处理,使用平均幅度差函数(Average Magnitude Difference Function,AMDF)和短时过零率(Short⁃Time Zero⁃Crossing Rate,STZCR)提取每帧心音信号的初始特征;然后将它们拼接后作为Bi⁃LSTM的输入,并引入时序注意力机制,挖掘特征的长期依赖关系,提取心音信号的上下文时域特征;最后通过Softmax分类器,实现正常/异常心音的分类。在PhysioNet/CinC Challenge 2016提供的心音公共数据集上对所提出的算法使用10折交叉验证法进行了评估,其准确度、灵敏度、特异性、精度和F1评分分别为0.9579、0.9364、0.9642、0.8838和0.9093,优于已有的其他算法。实验结果表明,该算法在无需进行心音分段的基础上就能有效实现异常心音检测,在心血管疾病的临床辅助诊断中具有潜在的应用前景。 展开更多
关键词 心音分类 平均幅度差函数 过零率 双向长短记忆网络 序注意力机制
在线阅读 下载PDF
基于卷积长短时记忆网络的短时公交客流量预测 被引量:3
8
作者 陈静 张昭冲 +2 位作者 王琳凯 安脉 王伟 《系统仿真学报》 CAS CSCD 北大核心 2024年第2期476-486,共11页
针对传统的短时客流预测方法没有考虑到时序特征中跨时段客流之间的相似性问题,提出一种改进k-means聚类算法与卷积神经网络和长短时记忆网络相结合的短时客流量预测模型k-CNN-LSTM。通过k-means算法对跨时段时序数据进行聚类,使用间隔... 针对传统的短时客流预测方法没有考虑到时序特征中跨时段客流之间的相似性问题,提出一种改进k-means聚类算法与卷积神经网络和长短时记忆网络相结合的短时客流量预测模型k-CNN-LSTM。通过k-means算法对跨时段时序数据进行聚类,使用间隔统计确定k值,构建交通流矩阵模型,采用CNN-LSTM网络处理具有时空特征的短时客流。该模型能够对具有空间相关性的数据进行较为准确的预测。使用真实数据集对模型进行检验和参数调优,实验结果表明:k-CNN-LSTM模型较其他模型有相对较高的预测精度。 展开更多
关键词 卷积神经网络 长短记忆网络 空数据预测 K-MEANS聚类 客流量预测
在线阅读 下载PDF
融合时空特征的双向ATT-LSTM航班延误预测
9
作者 罗凤娥 郭玲玉 +1 位作者 朱子垚 李玫 《航空计算技术》 2025年第1期17-21,27,共6页
航班延误预测对提高航空公司经济效益和旅客满意度具有重要意义。本研究提出了一种融合时空特征的双向注意力长短时记忆网络(Bi-ATT-LSTM)模型,旨在提升航班延误预测的准确性。该模型能够有效捕捉时间序列的动态特性及其空间依赖性。通... 航班延误预测对提高航空公司经济效益和旅客满意度具有重要意义。本研究提出了一种融合时空特征的双向注意力长短时记忆网络(Bi-ATT-LSTM)模型,旨在提升航班延误预测的准确性。该模型能够有效捕捉时间序列的动态特性及其空间依赖性。通过与随机森林模型和标准LSTM模型的对比实验,结果表明Bi-ATT-LSTM模型在复杂的时空数据背景下和多个数据集上显示出优越的性能。 展开更多
关键词 航班延误预测 双向长短记忆网络 注意力机制 空数据
在线阅读 下载PDF
基于长短期记忆网络的授时欺骗检测方法
10
作者 盛孟刚 盛思缘 +2 位作者 邓敏 王礼亮 姚志强 《全球定位系统》 CSCD 2024年第4期86-91,共6页
时空信息安全是国家关键基础设施安全的基础,时间系统被阻断或受到干扰会对国家经济带来巨大损失,甚至对国防安全造成重大威胁.现有授时欺骗检测方法主要对接收机时钟模型变化特点建立模型,对欺骗进行检测.由于攻击方式的不确定性和建... 时空信息安全是国家关键基础设施安全的基础,时间系统被阻断或受到干扰会对国家经济带来巨大损失,甚至对国防安全造成重大威胁.现有授时欺骗检测方法主要对接收机时钟模型变化特点建立模型,对欺骗进行检测.由于攻击方式的不确定性和建立的接收机时钟模型计算拟合过程中自身存在的系统误差,时钟模型参数准确拟合难度较大.环境适应能力较低.基于此,本文提出一种基于长短期记忆网络(long short-term memory,LSTM)的授时欺骗检测方法.该方法无需考虑授时欺骗的攻击方式,泛化能力强.根据授时欺骗前后接收机钟差变化的特点,利用LSTM优异的时间序列预测能力对接收机钟差变化趋势进行准确跟踪,实现对授时欺骗干扰的有效检测.最后使用TEXBAT(texas spoofing test battery)授时欺骗场景数据进行实验与分析,将LSTM与多层感知机(multilayer perceptron,MLP)进行实验对比.结果表明:LSTM授时欺骗检测的性能优于MLP. 展开更多
关键词 欺骗 机器学习 长短记忆网络(lstm) 欺骗检测 接收机钟差
在线阅读 下载PDF
基于长短时记忆的农作物生长环境数据预测
11
作者 吴超 周紫静 +3 位作者 黄锦铧 许啸寅 邱洪 彭业萍 《深圳大学学报(理工版)》 CAS CSCD 北大核心 2024年第5期563-573,共11页
针对传统温室农作物生长监控系统控制灵活性差且精确度低等问题,设计了一个面向智慧农业的农作物生长闭环监控系统.引入单变量长短时记忆(long short-term memory,LSTM)网络模型,对土壤含水率、土壤温度和土壤电导率3个农作物生长环境... 针对传统温室农作物生长监控系统控制灵活性差且精确度低等问题,设计了一个面向智慧农业的农作物生长闭环监控系统.引入单变量长短时记忆(long short-term memory,LSTM)网络模型,对土壤含水率、土壤温度和土壤电导率3个农作物生长环境数据进行预测研究.在优化时间步长参数的基础上,分析不同预测步长对单变量LSTM模型预测准确性的影响,采用不同时间段的测试集数据对模型的预测性能和稳定性进行验证.分别采用单变量LSTM模型、最小绝对值收敛和选择算法、随机森林回归、双向LSTM模型和编解码LSTM模型进行预测对比,结果表明,单变量LSTM模型预测的平均绝对误差值和均方根误差值均为最小,模型具有更好的准确性和稳定性.本研究设计的农作物生长闭环监控系统能有效预测农作物的生长环境数据,为农作物监控系统的智能控制提供有效数据支撑. 展开更多
关键词 人工智能 监控系统 预测模型 环境数据 长短记忆网络 间序列 智慧农业
在线阅读 下载PDF
基于长短时记忆网络的恒温水浴锅温度模型预测
12
作者 高兴泉 俞文博 段虹州 《河南科技》 2024年第2期34-39,共6页
【目的】由于恒温水浴锅温度系统存在强非线性及大滞后性,本研究提出一种基于长短时记忆网络的恒温水浴锅温度模型预测方法。【方法】首先,对采集到的数据进行标准化处理,寻找长短时记忆网络的最优结构及超参数,用来拟合出最佳的数据映... 【目的】由于恒温水浴锅温度系统存在强非线性及大滞后性,本研究提出一种基于长短时记忆网络的恒温水浴锅温度模型预测方法。【方法】首先,对采集到的数据进行标准化处理,寻找长短时记忆网络的最优结构及超参数,用来拟合出最佳的数据映射特征,并构建恒温水浴锅温度的动态数学模型。其次,通过模型对未来一段时间内的温度趋势进行预测。最后,使用本研究提出的方法与最小二乘法所预测的结果进行对比分析。【结果】本研究所提方法构建的模型的拟合度达到了98.2%,预测结果的MSE及MAE比最小二乘法模型分别降低了4.616、0.823。【结论】本研究所提方法具有更高的预测精度,对提高恒温水浴锅的生产效率及控制精度具有重要意义。 展开更多
关键词 恒温水浴锅 长短记忆网络 温度预测 数学模型
在线阅读 下载PDF
融合BERT和双向长短时记忆网络的中文反讽识别研究
13
作者 王旭阳 戚楠 魏申酉 《计算机工程与应用》 CSCD 北大核心 2024年第20期153-159,共7页
用户对微博热点话题进行评论时会使用反语、讽刺的修辞手法,其本身带有一定的情感倾向会对情感分析结果造成一定影响。因此该文主要针对中文微博评论进行反讽识别,构建了一个包含反语、讽刺和非反讽的三分类数据集,提出一个基于BERT和... 用户对微博热点话题进行评论时会使用反语、讽刺的修辞手法,其本身带有一定的情感倾向会对情感分析结果造成一定影响。因此该文主要针对中文微博评论进行反讽识别,构建了一个包含反语、讽刺和非反讽的三分类数据集,提出一个基于BERT和双向长短时记忆网络(BiLSTM)的模型BERT_BiLSTM。该模型通过BERT生成含有上下文信息的动态字向量,输入BiLSTM提取文本的深层反讽特征,在全连接层传入softmax对文本进行反讽识别。实验结果表示,在二分类和三分类数据集上,提出的BERT_BiLSTM模型与现有主流模型相比准确率和F1值均有明显提高。 展开更多
关键词 反讽识别 BERT 特征提取 双向长短记忆网络(Bilstm)
在线阅读 下载PDF
GPU异构计算环境中长短时记忆网络模型的应用及优化
14
作者 梁桂才 梁思成 陆莹 《计算机应用文摘》 2024年第10期37-41,共5页
随着深度学习的广泛应用及算力资源的异构化,在GPU异构计算环境下的深度学习加速成为又一研究热点。文章探讨了在GPU异构计算环境中如何应用长短时记忆网络模型,并通过优化策略提高其性能。首先,介绍了长短时记忆网络模型的基本结构(包... 随着深度学习的广泛应用及算力资源的异构化,在GPU异构计算环境下的深度学习加速成为又一研究热点。文章探讨了在GPU异构计算环境中如何应用长短时记忆网络模型,并通过优化策略提高其性能。首先,介绍了长短时记忆网络模型的基本结构(包括门控循环单元、丢弃法、Adam与双向长短时记忆网络等);其次,提出了在GPU上执行的一系列优化方法,如CuDNN库的应用及并行计算的设计等。最终,通过实验分析了以上优化方法在训练时间、验证集性能、测试集性能、超参数和硬件资源使用等方面的差异。 展开更多
关键词 GPU异构 长短记忆网络 门控循环单元 ADAM DROPOUT CuDNN
在线阅读 下载PDF
基于改进注意力机制的时间卷积网络-长短期记忆网络短期电力负荷预测
15
作者 刘伟 王洪志 《电气技术》 2024年第10期8-14,共7页
为充分挖掘蕴含在电力负荷数据中的有效时序信息,提高短期电力负荷预测准确度,本文提出一种基于改进注意力机制的时间卷积网络(TCN)-长短期记忆(LSTM)网络负荷预测模型。首先,将时序数据输入TCN模型中进行时序特征提取;然后,将所提取的... 为充分挖掘蕴含在电力负荷数据中的有效时序信息,提高短期电力负荷预测准确度,本文提出一种基于改进注意力机制的时间卷积网络(TCN)-长短期记忆(LSTM)网络负荷预测模型。首先,将时序数据输入TCN模型中进行时序特征提取;然后,将所提取的时序特征与非时序数据组合,并输入LSTM模型中进行训练;最后,采用贝叶斯优化方法进行超参数寻优以获得TCN-LSTM模型的最优参数,引入通过多层感知器(MLP)改进的注意力机制以减少历史信息丢失并加强重要信息的影响,完成短期负荷预测。通过对比多种深度学习模型的预测效果表明,本文所提模型的短期电力负荷预测准确度更高。 展开更多
关键词 短期电力负荷预测 改进注意力机制 贝叶斯优化 多层感知器(MLP) 间卷积网络(TCN) 长短记忆(lstm)网络
在线阅读 下载PDF
基于迁移学习和降噪自编码器-长短时间记忆的锂离子电池剩余寿命预测 被引量:17
16
作者 尹杰 刘博 +1 位作者 孙国兵 钱湘伟 《电工技术学报》 EI CSCD 北大核心 2024年第1期289-302,共14页
针对锂离子电池退化数据噪声大、数据量少以及不同生命时期的退化趋势不同而导致的模型预测精度低、泛化能力差等问题,从数据预处理、预测模型的构建与训练三方面展开研究:首先结合变分自编码器(VAE)和生成对抗网络模型(GAN)构建VAE-GA... 针对锂离子电池退化数据噪声大、数据量少以及不同生命时期的退化趋势不同而导致的模型预测精度低、泛化能力差等问题,从数据预处理、预测模型的构建与训练三方面展开研究:首先结合变分自编码器(VAE)和生成对抗网络模型(GAN)构建VAE-GAN模型生成多组数据,实现电池的退化数据增强;然后结合降噪自编码器(DAE)和长短时记忆(LSTM)神经网络构建DAE-LSTM模型进行数据降噪和容量预测,为了降低模型参数,此过程中的数据降噪和预测共享同一个损失函数;最后先利用生成数据对DAE-LSTM模型进行预训练,再利用真实数据对其进行迁移训练。在CACLE和NASA公开数据集进行性能测试,实验结果表明该文所提方法精度高、鲁棒性强,能够有效提高锂离子电池剩余寿命的预测效果。 展开更多
关键词 锂离子电池 剩余寿命预测 降噪 自编码器 长短记忆神经网络 迁移学习
在线阅读 下载PDF
基于长短时记忆神经网络的励磁涌流与故障电流识别方法 被引量:1
17
作者 张国栋 刘凯 +2 位作者 蒲海涛 姚福强 张帅帅 《上海交通大学学报》 EI CAS CSCD 北大核心 2024年第5期730-738,共9页
变压器空载合闸时产生励磁涌流导致差动保护误动作的问题至今仍未能被完全解决.针对该问题,提出一种利用长短时记忆(LSTM)神经网络识别励磁涌流与故障电流的方法.首先,在PSCAD软件平台上搭建变压器空载合闸及内部故障仿真模型,通过仿真... 变压器空载合闸时产生励磁涌流导致差动保护误动作的问题至今仍未能被完全解决.针对该问题,提出一种利用长短时记忆(LSTM)神经网络识别励磁涌流与故障电流的方法.首先,在PSCAD软件平台上搭建变压器空载合闸及内部故障仿真模型,通过仿真产生大量三相电流瞬时采样数据作为训练神经网络的样本集;然后,利用Keras平台搭建LSTM神经网络模型并完成训练;最后,利用新的仿真数据和现场故障录波数据对训练好的LSTM神经网络进行测试.结果表明LSTM神经网络可以快速准确地区分各种情况下的励磁涌流和故障电流,从而证实该方法的有效性. 展开更多
关键词 变压器差动保护 长短记忆神经网络 励磁涌流识别 故障电流识别
在线阅读 下载PDF
基于WD-LSTM的宽带电磁辐射时序建模预测方法
18
作者 杨晨 宋欣蔚 岳云涛 《现代电子技术》 北大核心 2025年第6期9-15,共7页
无线通信技术的飞速发展以及包含相关功能产品的广泛使用,使得环境电磁场呈现复杂的变化特性,且城市电磁环境状况日益恶化,故进行电磁辐射的分析与预测对于潜在风险预警与控制至关重要。文中对北京市典型商业区核心街道连续时段的宽带... 无线通信技术的飞速发展以及包含相关功能产品的广泛使用,使得环境电磁场呈现复杂的变化特性,且城市电磁环境状况日益恶化,故进行电磁辐射的分析与预测对于潜在风险预警与控制至关重要。文中对北京市典型商业区核心街道连续时段的宽带电磁辐射进行了测量,并对其进行了短时傅里叶变换分析。分析结果显示,电磁辐射时变规律与人们的作息活动具有相关性,且受部分时段无线设备密集使用的影响,呈现出强烈的低频周期性和高频波动性,而这些特性会导致单一的时序建模方法预测效果变差。为此,提出了一种结合小波分解(WD)与长短时记忆(LSTM)模型的混合预测方法。该方法根据电磁辐射时频特性,将其分解为主要周期分量和细节分量进行分层预测,以适应复杂城市电磁环境状况。基于测量数据,将所提方法与其他典型时序预测模型进行对比,结果表明,该方法的预测准确度更高,并具有更强的异常值适应性与稳定性。 展开更多
关键词 宽带电磁辐射 间序列 小波分解 长短记忆模型 频特性 分层预测
在线阅读 下载PDF
基于WOA-IGWO-LSTM的作业车间实时调度
19
作者 郑华丽 魏光艳 +2 位作者 孙东 王明君 叶春明 《机床与液压》 北大核心 2025年第2期54-63,共10页
针对作业车间实时调度问题,基于长短期记忆(LSTM)神经网络,提出WOA-IGWO-LSTM算法。根据调度问题和算法设计三元样本数据结构,以性能指标和生产系统状态属性作为输入特征,输出当前决策点的最佳调度规则。利用鲸鱼优化算法(WOA)对输入特... 针对作业车间实时调度问题,基于长短期记忆(LSTM)神经网络,提出WOA-IGWO-LSTM算法。根据调度问题和算法设计三元样本数据结构,以性能指标和生产系统状态属性作为输入特征,输出当前决策点的最佳调度规则。利用鲸鱼优化算法(WOA)对输入特征进行降维,以提高模型泛化能力和准确性。引入非线性收敛因子设计一种改进灰狼算法(IGWO)用于调节LSTM参数,提高算法实用性。最后,通过对比试验验证了WOA、IGWO以及WOA-IGWO-LSTM的有效性,并利用工业案例数据验证了WOA-IGWO-LSTM对于解决作业车间实时调度问题的有效性和可行性。 展开更多
关键词 长短记忆(lstm)神经网络 鲸鱼优化算法(WOA) 改进灰狼算法 作业车间实调度
在线阅读 下载PDF
基于改进灰狼算法优化双向长短时记忆神经网络的水冷壁壁温预测 被引量:1
20
作者 詹毅 冯磊华 +1 位作者 杨锋 钟信 《热力发电》 CAS CSCD 北大核心 2024年第1期188-196,共9页
提出一种基于改进灰狼(MGWO)算法优化双向长短时记忆(BiLSTM)神经网络的水冷壁壁温预测模型,灰狼算法采用非线性因子调整策略、自适应位置更新策略和动态权重修改策略进行改进以提升算法的全局寻优能力,利用改进灰狼算法优化BiLSTM模型... 提出一种基于改进灰狼(MGWO)算法优化双向长短时记忆(BiLSTM)神经网络的水冷壁壁温预测模型,灰狼算法采用非线性因子调整策略、自适应位置更新策略和动态权重修改策略进行改进以提升算法的全局寻优能力,利用改进灰狼算法优化BiLSTM模型的隐藏层数量、学习率和正则化参数以提高模型的预测精度,采用新疆某电厂的数据进行预测仿真,结果表明:改进后的算法预测精度更高,在机组升、降负荷时,均可以预测到壁温的变化趋势,模型的平均均方根误差相比于长短时记忆(LSTM)神经网络、BiLSTM模型分别降低了9.86%和3.69%,且可以提前预测到水冷壁壁温的超温情况,对于预防水冷壁超温有重要意义。 展开更多
关键词 水冷壁 壁温预测 双向长短记忆神经网络 改进灰狼算法 自适应位置更新
在线阅读 下载PDF
上一页 1 2 133 下一页 到第
使用帮助 返回顶部