期刊文献+
共找到224篇文章
< 1 2 12 >
每页显示 20 50 100
双向长短期记忆网络的时间序列预测方法 被引量:4
1
作者 管业鹏 苏光耀 盛怡 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2024年第3期103-112,共10页
时间序列预测即利用历史时间序列数据,预测未来一段时间内的数据信息,以便提前制定相应策略。目前,时间序列的类别复杂繁多,而现有的时间序列预测模型面对多种类型数据时无法取得稳定预测的结果,进而难以同时满足对现实中多种复杂的时... 时间序列预测即利用历史时间序列数据,预测未来一段时间内的数据信息,以便提前制定相应策略。目前,时间序列的类别复杂繁多,而现有的时间序列预测模型面对多种类型数据时无法取得稳定预测的结果,进而难以同时满足对现实中多种复杂的时序数据预测的应用需求。针对上述问题,提出了一种基于时间注意力机制双向长短期记忆网络的时间序列预测方法。笔者提出的网络模型采用改进的正向和反向传播机制提取时序信息并通过自适应权重分配策略推理未来的时序信息。具体来说,设计了一个改进的双向长短期记忆网络,通过结合双向长短期记忆和长短期记忆网络提取深度时间序列特征,挖掘上下文的时序依赖关系。在此基础上,融合所提出的时间注意力机制,实现对深度时间序列特征进行自适应加权,提升深度时序特征的显著性表达能力。通过与同类代表性方法在多个不同类别数据集上的客观定量对比,实验结果表明,该方法能够在多种类别的复杂时间序列数据上更优的预测性能。 展开更多
关键词 时间序列 双向长短期记忆网络 长短期记忆网络 注意力机制 深度学习
在线阅读 下载PDF
基于双向长短期记忆网络的气体绝缘全封闭组合电器设备的SF_(6)气体密度预测
2
作者 戴丽莉 《山西电力》 2025年第1期15-19,共5页
气体绝缘全封闭组合电器设备中的SF_(6)密度是决定其绝缘和灭弧性能的关键因素,实际中采用带有温度补偿功能的气体压力表作为密度表监测气体绝缘全封闭组合电器设备的SF_(6)密度。由于正常运行时气室温度与环境温度并不平衡且压力表的... 气体绝缘全封闭组合电器设备中的SF_(6)密度是决定其绝缘和灭弧性能的关键因素,实际中采用带有温度补偿功能的气体压力表作为密度表监测气体绝缘全封闭组合电器设备的SF_(6)密度。由于正常运行时气室温度与环境温度并不平衡且压力表的温度补偿功能不可避免地存在一定误差,运维人员在巡视过程中很难凭借经验准确判断SF_(6)密度表读数的变化是否正常。基于此,结合历史运行数据,利用双向长短期记忆神经网络对气体绝缘全封闭组合电器设备SF_(6)密度进行了高精度预测,为现场工作人员准确判断气体绝缘全封闭组合电器设备运行状态提供了有力支撑。 展开更多
关键词 气体绝缘全封闭组合电器设备 SF_(6)密度 双向长短期记忆网络 时间序列预测
在线阅读 下载PDF
基于四元数长短期记忆网络的多维时间序列预测
3
作者 鞠巍 王瑞 《工业控制计算机》 2024年第2期129-130,共2页
多维时间序列数据存在于实际生活中,包括楼盘价格、道路上交通流量、不同区域的CO_(2)浓度等等。循环神经网络(RNN)是有效处理时间序列数据的一种模型,其变体长短期记忆网络(LSTM)有效解决了RNN反向传播路径过长、易产生梯度爆炸或消失... 多维时间序列数据存在于实际生活中,包括楼盘价格、道路上交通流量、不同区域的CO_(2)浓度等等。循环神经网络(RNN)是有效处理时间序列数据的一种模型,其变体长短期记忆网络(LSTM)有效解决了RNN反向传播路径过长、易产生梯度爆炸或消失的问题。以四元数代替实数进行网络参数传播,通过四元数内部结构的依赖性,捕获多维时间序列特征之间的内部关系,使得多维时间序列特征中固有的结构信息得到很好的保存。 展开更多
关键词 四元数 长短期记忆网络 多维时间序列
在线阅读 下载PDF
长短期记忆网络在P波初至震相识别中的实验研究
4
作者 王天哲 张万佶 +1 位作者 祁善博 江国明 《CT理论与应用研究(中英文)》 2025年第2期205-215,共11页
初至震相的识别是地震数据处理中的基本内容。由于人工识别效率较低,且受到人为主观因素的影响,因此近年来陆续发展出许多自动识别初至震相的方法。然而,这些自动识别方法主要基于背景噪声和地震信号的差异,并且通常需要一个阈值,因此... 初至震相的识别是地震数据处理中的基本内容。由于人工识别效率较低,且受到人为主观因素的影响,因此近年来陆续发展出许多自动识别初至震相的方法。然而,这些自动识别方法主要基于背景噪声和地震信号的差异,并且通常需要一个阈值,因此难以在复杂的地震区域实施或应对海量的地震数据。为克服这些不足,本文搭建7层基于长短期记忆网络(Lstm)的卷积循环神经网络,开展P波初至震相识别的实验研究,并利用南加州公开的数据集对新建的卷积循环神经网络进行训练和测试。通过与传统的卷积神经网络、自动识别算法、Pick-Net、EQtransformer网络等进行对比,本研究搭建的卷积循环神经网络的识别精度相对较高,因此可直接使用地震波形数据作为时间序列进行训练。此外,虽然本研究建立的卷积循环神经网络只有7层网络,但基本达到复杂网络模型的震相识别精度,充分说明卷积循环神经网络的优势。综上,本研究提出的基于时间序列卷积循环神经网络为P波初至震相的自动识别提供一种新思路,为快速精准的自动识别震相问题提供技术支持。 展开更多
关键词 深度学习 初至震相 卷积循环神经网络 长短期记忆网络 时间序列
在线阅读 下载PDF
基于双向长短期记忆网络与时间序列卷积的户变关系异常识别
5
作者 张肖羽 《现代计算机》 2024年第22期176-178,196,共4页
在电力系统的运维中,准确识别户变关系异常是确保电网运行稳定性与效率的关键。为了进行户变关系异常的准确识别,提出了一种新型的基于双向长短期记忆网络BiLSTM与时间序列卷积TCN的并行神经网络模型,旨在提高户变关系异常识别的准确性... 在电力系统的运维中,准确识别户变关系异常是确保电网运行稳定性与效率的关键。为了进行户变关系异常的准确识别,提出了一种新型的基于双向长短期记忆网络BiLSTM与时间序列卷积TCN的并行神经网络模型,旨在提高户变关系异常识别的准确性和效率。通过将BiLSTM和TCN的优势结合,该模型能够更有效地处理时间序列数据,捕捉异常模式。实验结果表明,与传统的LSTM和BiLSTM模型相比,所提出的BiLSTM-TCN并行神经网络模型在识别精度和泛化能力方面表现更优。此研究为电力系统异常监测提供了一种有效的技术方案。 展开更多
关键词 双向长短期记忆网络 时间序列卷积 户变关系 异常检测
在线阅读 下载PDF
基于树结构长短期记忆神经网络的金融时间序列预测 被引量:10
6
作者 姚小强 侯志森 《计算机应用》 CSCD 北大核心 2018年第11期3336-3341,共6页
针对传统方法对多噪声、非线性的时间序列无法进行有效预测的问题,以多尺度特征融合为切入点,提出并验证了基于树结构长短期记忆(LSTM)神经网络的预测方法。首先,提出了实现预测目标的核心方法,并分析了方法的内在优势;其次,构建了基于... 针对传统方法对多噪声、非线性的时间序列无法进行有效预测的问题,以多尺度特征融合为切入点,提出并验证了基于树结构长短期记忆(LSTM)神经网络的预测方法。首先,提出了实现预测目标的核心方法,并分析了方法的内在优势;其次,构建了基于树结构长短期记忆神经网络的预测模型;最后,基于最近十年的国际黄金现货交易数据对模型进行了验证。实验结果表明,所提算法预测准确率高出最小成功率近10个百分点,证实了所提方法的有效性。 展开更多
关键词 树结构 长短期记忆神经网络 金融时间序列 预测
在线阅读 下载PDF
基于残差连接长短期记忆网络的时间序列修复模型 被引量:6
7
作者 钱斌 郑楷洪 +4 位作者 陈子鹏 肖勇 李森 叶纯壮 马千里 《计算机应用》 CSCD 北大核心 2021年第1期243-248,共6页
传统的时间序列缺失修复方法通常假设数据由线性动态系统产生,然而时间序列更多地表现为非线性。为此,提出了基于残差连接长短期记忆(LSTM)网络的时间序列修复模型,称为RSI-LSTM,用来有效捕获时间序列的非线性动态特性,并且挖掘缺失数... 传统的时间序列缺失修复方法通常假设数据由线性动态系统产生,然而时间序列更多地表现为非线性。为此,提出了基于残差连接长短期记忆(LSTM)网络的时间序列修复模型,称为RSI-LSTM,用来有效捕获时间序列的非线性动态特性,并且挖掘缺失数据和最近的非缺失数据之间的潜在关联。具体来说,就是采用LSTM网络对时间序列的非线性动态特性进行建模,同时引入残差连接来挖掘历史值与缺失值的联系,从而提升模型的修复能力。首先使用RSI-LSTM对单变量日供电量数据集的缺失数据进行修复,然后在第九届电工数学建模竞赛A题的电力负荷数据集上,引入气象因素作为RSI-LSTM的多变量输入,以提升模型对时间序列缺失值的修复效果。此外,使用了两个通用的多变量时间序列数据集以验证模型的缺失修复能力。实验结果表明,在单变量和多变量数据集上,RSI-LSTM的缺失值修复效果均优于LSTM,得到的均方误差(MSE)总体下降了10%。 展开更多
关键词 缺失数据修复 长短期记忆网络 残差连接 时间序列 时序依赖
在线阅读 下载PDF
基于改进长短期记忆网络的时间序列预测研究 被引量:6
8
作者 陈孝文 苏攀 +2 位作者 吴彬溶 成承 王林 《武汉理工大学学报(信息与管理工程版)》 2022年第3期487-494,499,共9页
时间序列预测是研究时间数据行为和预测未来值的一项重要技术,为进一步扩展时间序列预测方法论,提出了一种新颖的时间序列预测框架来处理时间序列预测问题,即VMD-JADE-基于注意力机制的双向长短期记忆网络。变分模态分解用来分解历史时... 时间序列预测是研究时间数据行为和预测未来值的一项重要技术,为进一步扩展时间序列预测方法论,提出了一种新颖的时间序列预测框架来处理时间序列预测问题,即VMD-JADE-基于注意力机制的双向长短期记忆网络。变分模态分解用来分解历史时间序列数据,具有降噪的功能;改进的差分进化算法JADE用来优化LSTM的超参数;最后采用基于注意力机制的双向LSTM进行预测,双向机制可以从顺序和逆序两个方向挖掘输入变量的重要信息,注意机制通过对输入的特征赋予不同的权重来捕获重要的因素,有助于提升LSTM的预测性能。在两个时间序列数据集上的实验结果表明,与其它常用的预测方法相比,改进的LSTM模型具有更好的预测性能。 展开更多
关键词 时间序列预测 深度学习 长短期记忆网络 变分模态分解 玉米期货价格
在线阅读 下载PDF
长短期记忆神经网络用于空调系统故障时间序列分析 被引量:6
9
作者 宋海川 顾明伟 +1 位作者 张弘韬 董小林 《制冷技术》 2020年第6期24-30,共7页
空调系统自动故障诊断已经成为保障空调机组安全稳定运行的重要手段。针对传统机器学习方法难以自学习和适应故障时间序列特征从而准确性下降的问题,结合长短期记忆(Long-short Term Memory,LSTM)神经网络适用于处理高度时间相关性和高... 空调系统自动故障诊断已经成为保障空调机组安全稳定运行的重要手段。针对传统机器学习方法难以自学习和适应故障时间序列特征从而准确性下降的问题,结合长短期记忆(Long-short Term Memory,LSTM)神经网络适用于处理高度时间相关性和高维耦合性数据的特点,本文提出了一种基于LSTM的故障时间序列分析方法处理典型的故障前后时序数据,搭建故障智能诊断模型。采集实际运行的风冷螺杆机组低压保护故障时间序列数据,用于训练LSTM网络。结果表明:基于LSTM网络的模型在测试集上分类准确率达92.86%,验证了其相对于传统的机器学习算法具有更高的准确度,随着数据量的提升,LSTM有望能发挥其更好的预测性能。 展开更多
关键词 长短期记忆网络 深度学习 时间序列分析 故障诊断 空调系统
在线阅读 下载PDF
基于长短期记忆网络的时间序列预测研究 被引量:3
10
作者 史国荣 戴洪德 +1 位作者 戴邵武 陈强强 《仪表技术》 2020年第2期24-26,29,共4页
针对递归神经网络(RNN)模型难以训练和梯度消失等问题,引入长短期记忆网络算法(LSTM)。介绍了LSTM的基本原理,并将其应用于时间序列预测领域。以Wiener退化过程为例进行分析,针对传统预测方法无法兼顾退化数据的非线性及时序性特点,利用... 针对递归神经网络(RNN)模型难以训练和梯度消失等问题,引入长短期记忆网络算法(LSTM)。介绍了LSTM的基本原理,并将其应用于时间序列预测领域。以Wiener退化过程为例进行分析,针对传统预测方法无法兼顾退化数据的非线性及时序性特点,利用LSTM方法对Wiener退化过程时间序列进行预测。该预测算法与传统的预测算法进行了比较,研究结果表明,所构建的模型具有更高的预测模型精度,达到了预测要求。 展开更多
关键词 递归神经网络 长短期记忆网络 维纳过程 时间序列预测
在线阅读 下载PDF
基于改进长短期记忆网络的飞控系统飞参数据异常检测方法
11
作者 李导 黄锐 +1 位作者 周雨 周泽屹 《国外电子测量技术》 2024年第12期53-61,共9页
飞行控制系统作为战斗机的核心安全保障,负责控制飞行姿态、航向和高度等关键动作。对飞控系统的监测飞行参数进行分析,有助于及时发现异常,提升故障识别速度,从而确保飞行安全。针对传统单向神经网络结构难以有效捕捉复杂飞控系统飞参... 飞行控制系统作为战斗机的核心安全保障,负责控制飞行姿态、航向和高度等关键动作。对飞控系统的监测飞行参数进行分析,有助于及时发现异常,提升故障识别速度,从而确保飞行安全。针对传统单向神经网络结构难以有效捕捉复杂飞控系统飞参数据的时间依赖性,以及均方误差(MSE)损失函数在处理异常与噪声时的鲁棒性不足的问题,提出双向长短期记忆网络(Bi-LSTM)模型,同时结合Huber Loss以增强对噪声的抗干扰能力,针对飞行参数,首先进行特征数据对齐和降采样处理,采用滑窗自回归预测方法学习飞机的正常飞行模式,并通过Huber Loss设定异常检测阈值,从而判断测试集中的异常点。实验在卡内基梅隆大学提供的ALFA数据集上进行,结果表明,所提出的改进Bi-LSTM模型在多项指标上优于当前先的异常检测模型,特别是在F1分数和AUC等关键指标上表现优异,可有效提升模型的异常检测能力。 展开更多
关键词 飞控系统飞参数据 异常检测 双向长短期记忆网络 时间序列预测
在线阅读 下载PDF
基于长短期记忆神经网络的股票时间序列预测
12
作者 张伟豪 《信息与电脑》 2022年第9期68-72,共5页
随着科技的进步和股票市场的兴起,对股票开盘价的预测已成为投资者的迫切需要,而传统的预测方法无法准确预测股票开盘价的走势。因此,提出了一种基于长短期记忆神经网络的股票开盘价时间序列预测方法。首先,对获取的数据进行预处理,为... 随着科技的进步和股票市场的兴起,对股票开盘价的预测已成为投资者的迫切需要,而传统的预测方法无法准确预测股票开盘价的走势。因此,提出了一种基于长短期记忆神经网络的股票开盘价时间序列预测方法。首先,对获取的数据进行预处理,为后续的预测模型奠定了基础;其次,构建基于长短期记忆神经网络股票开盘价时间序列预测模型;最后,使用MATLAB进行仿真。与反向传播神经网络预测模型进行对比,长短期记忆神经网络模型的预测误差率仅为1.12%,预测精度提高了18.25%。仿真结果表明,长短期记忆神经网络对股票开盘价的预测较传统方法精度更高,为投资者对股票价格趋势发展提供了技术支撑。 展开更多
关键词 股票开盘价 长短期记忆(LSTM)神经网络 MATLAB 时间序列预测
在线阅读 下载PDF
基于LSTM的长短期偏好序列推荐算法研究
13
作者 赵录录 赵宇红 《内蒙古科技大学学报》 CAS 2024年第3期271-275,共5页
动态时间序列是许多现代推荐系统的关键特征,主要是为了寻求基于用户最近执行的动作来捕获用户活动的“上下文”,然而大部分基于长短期记忆网络的序列模型只考虑了用户的短期兴趣,忽略了长期兴趣。为提升序列推荐的性能,提出一种基于LST... 动态时间序列是许多现代推荐系统的关键特征,主要是为了寻求基于用户最近执行的动作来捕获用户活动的“上下文”,然而大部分基于长短期记忆网络的序列模型只考虑了用户的短期兴趣,忽略了长期兴趣。为提升序列推荐的性能,提出一种基于LSTM的长短期偏好序列推荐方法LLSPRec(Long Short-term Preference Recommendation Based on LSTM)。该方法使用LSTM对用户的时间序列进行建模,聚合了序列之间的相关特征信息,得到用户的近期偏好,通过距离度量学习对用户本身和候选项目距离进行建模,得到用户的长期偏好,并根据用户的意图动态地整合用户的长期和近期偏好,从而准确地描述用户兴趣,提高推荐结果的多样性。 展开更多
关键词 长短期记忆网络 度量学习 动态时间序列 序列推荐 元素相关性
在线阅读 下载PDF
多模型融合的时间序列数据预测方法
14
作者 张建勋 胡少杰 +1 位作者 芦丽旭 潘禹江 《西安邮电大学学报》 2025年第1期115-122,共8页
针对长短期记忆(Long Short-Term Memory,LSTM)神经网络预测滞后性和过度依赖数据的问题,提出一种多模型融合的时间序列数据预测方法。该方法在融合经验模态分解和自回归积分滑动平均模型(Autoregressive Integrated Moving Average Mod... 针对长短期记忆(Long Short-Term Memory,LSTM)神经网络预测滞后性和过度依赖数据的问题,提出一种多模型融合的时间序列数据预测方法。该方法在融合经验模态分解和自回归积分滑动平均模型(Autoregressive Integrated Moving Average Model,ARIMA)基础上,先对数据进行经验模态分解,然后针对分解数据的线性分量和非线性分量分别采用ARIMA模型和引入注意力机制的LSTM模型进行处理,最后合成预测结果。实验结果表明,该方法的预测精度达到98.95%,与单一模型对比,融合模型具有更高的预测精度。 展开更多
关键词 经验模态分解 自回归移动平均 长短期记忆神经网络 注意力机制 时间序列数据预测
在线阅读 下载PDF
基于数据挖掘的长短期记忆网络模型油井产量预测方法 被引量:59
15
作者 谷建伟 周梅 +2 位作者 李志涛 贾祥军 梁颖 《特种油气藏》 CAS CSCD 北大核心 2019年第2期77-81,131,共6页
传统的BP神经网络及其改进算法广泛应用于产量预测,但并不适宜时间序列预测问题。基于产油量变化的时间序列特征,提出利用长短期记忆网络(LSTM)深度学习模型实现具有长期记忆能力的时间序列预测,在描述LSTM神经网络的基本结构和算法原... 传统的BP神经网络及其改进算法广泛应用于产量预测,但并不适宜时间序列预测问题。基于产油量变化的时间序列特征,提出利用长短期记忆网络(LSTM)深度学习模型实现具有长期记忆能力的时间序列预测,在描述LSTM神经网络的基本结构和算法原理基础上,阐述了样本数据处理,输入层、隐藏层和输出层节点数选择及表征方式,形成产量预测模型。实例应用表明,LSTM模型可以准确预测油井产量,整体平均误差约为1. 46%,并指出无预兆停产、特殊情况以及部分数据量缺失是影响预测准确性的主要原因。该模型的提出对于大数据和深度学习在石油方面的应用研究具有重要意义。 展开更多
关键词 长短期记忆网络 产量预测 时间序列 深度学习
在线阅读 下载PDF
时间序列雷达数据识别耕地种粮类型的研究
16
作者 武晓天 欧正蜂 +3 位作者 王晓蕾 孙汉英 王长委 黄永奇 《中国农村水利水电》 北大核心 2025年第1期124-128,135,共6页
以广东省揭阳市揭西县为研究对象,采用2021年下半年的时间序列哨兵一号数据,分析了实测样本的水稻、玉米、坑塘水面、未耕种、树林和蔬菜等耕地上不同覆盖物的时间序列后向散射系数特征和类间差异性,结果表明耕地种粮类型分类的最优极... 以广东省揭阳市揭西县为研究对象,采用2021年下半年的时间序列哨兵一号数据,分析了实测样本的水稻、玉米、坑塘水面、未耕种、树林和蔬菜等耕地上不同覆盖物的时间序列后向散射系数特征和类间差异性,结果表明耕地种粮类型分类的最优极化方式为VH极化,在此基础上构建了基于长短期记忆网络(Long Short-Term Memory networks,LSTM)的耕地种粮类型识别模型,模型精度达到90%。根据模型提取了研究区的水稻、玉米、坑塘水面、未耕种、树林和蔬菜的空间分布,为多云地区的耕地种类监测提供了新的遥感技术手段。 展开更多
关键词 耕地种粮监测 哨兵一号 时间序列 长短期记忆网络 揭西县
在线阅读 下载PDF
基于时间序列的非周期预测模型
17
作者 曹建文 委兴宝 +2 位作者 杨裔 李彩虹 赵文清 《大数据》 2025年第1期135-149,共15页
在实际应用中,纯周期性的数据相对罕见,大多数数据往往表现出非周期性特征,难以通过简单的周期性变化进行预测或描述。而单一神经网络在处理非周期性时间序列时往往面临过拟合、长时依赖捕获困难、非线性关系捕获有限等问题。为了有效... 在实际应用中,纯周期性的数据相对罕见,大多数数据往往表现出非周期性特征,难以通过简单的周期性变化进行预测或描述。而单一神经网络在处理非周期性时间序列时往往面临过拟合、长时依赖捕获困难、非线性关系捕获有限等问题。为了有效地对非周期性时间序列进行预测,基于Informer模型提出了ILTNet模型。ILTNet模型结合线性预测(AR模型)和非线性预测(Informer模型与循环跳跃组件),能有效捕获长期依赖关系。实验证明,与LSTNet、Informer、AR以及GRU模型相比,ILTNet模型在非周期时间序列预测上表现出显著优势。例如,在Exchange Rate数据集上,ILNet模型相对于LSTNet模型,在步长为96和128时将RSE分别降低了0.0333和0.0277,相对于Informer模型在所有步长下,RSE均有显著降低,尤其是在步长为96时将RSE降低了0.2877。 展开更多
关键词 多变量 时间序列预测 卷积神经网络 lstnet INFORMER
在线阅读 下载PDF
基于随机森林的长短期记忆网络气温预测 被引量:40
18
作者 陶晔 杜景林 《计算机工程与设计》 北大核心 2019年第3期737-743,共7页
针对气象数据多为时间序列,而传统预测方法没有将时间相关性考虑在内,导致预测准确率低的问题,提出一种基于随机森林的长短期记忆网络气温预测模型。利用随机森林选择出与气温高度相关的气象要素作为输入变量,消除原始气象数据中的噪音... 针对气象数据多为时间序列,而传统预测方法没有将时间相关性考虑在内,导致预测准确率低的问题,提出一种基于随机森林的长短期记忆网络气温预测模型。利用随机森林选择出与气温高度相关的气象要素作为输入变量,消除原始气象数据中的噪音、降低网络的复杂度,在此基础上利用长短期记忆网络建立总体预测模型,在采集的多要素气象数据上进行实验。实验结果表明,该模型在处理大规模多变量的时间序列数据时具有较高的预测精度和较强的泛化能力。 展开更多
关键词 循环神经网络 长短期记忆网络 随机森林 时间序列 气温预测 气象要素
在线阅读 下载PDF
基于多尺度跳跃深度长短期记忆网络的短期多变量负荷预测 被引量:14
19
作者 肖勇 郑楷洪 +3 位作者 郑镇境 钱斌 李森 马千里 《计算机应用》 CSCD 北大核心 2021年第1期231-236,共6页
近年来,以循环神经网络(RNN)为主体构建的预测模型在短期电力负荷预测中取得了优越的性能。然而,由于RNN不能有效捕捉存在于短期电力负荷数据的多尺度时序特征,因而难以进一步提升负荷预测精度。为了捕获短期电力负荷数据中的多尺度时... 近年来,以循环神经网络(RNN)为主体构建的预测模型在短期电力负荷预测中取得了优越的性能。然而,由于RNN不能有效捕捉存在于短期电力负荷数据的多尺度时序特征,因而难以进一步提升负荷预测精度。为了捕获短期电力负荷数据中的多尺度时序特征,提出了一种基于多尺度跳跃深度长短期记忆(MSD-LSTM)网络的短期电力负荷预测模型。具体来说,以长短期记忆(LSTM)网络为主体构建预测模型能够较好地捕获长短期时序依赖,从而缓解时序过长时重要信息容易丢失的问题。进一步地,采用多层LSTM架构并且对各层设置不同的跳跃连接数,使得MSD-LSTM的每一层能够捕获不同时间尺度的特征。最后,引入全连接层把各层提取到的多尺度时序特征进行融合,再利用该融合特征进行短期电力负荷预测。实验结果表明,与单层LSTM和多层LSTM相比,MSD-LSTM的均方误差总体下降了10%。可见MSD-LSTM能够更好地提取短期负荷数据中的多尺度时序特征,从而提高短期电力负荷预测的精度。 展开更多
关键词 短期电力负荷预测 时间序列预测 多尺度时序特征 长短期记忆网络 跳跃连接
在线阅读 下载PDF
基于长短期记忆网络的轴承故障识别 被引量:12
20
作者 唐赛 何荇兮 +1 位作者 张家悦 尹爱军 《汽车工程学报》 2018年第4期297-303,共7页
提出一种基于长短期记忆网络的可以无需预先提取故障特征的轴承故障识别方法。原始的轴承故障振动信号被分成训练集和测试集,将训练集数据映射到线性网络层,通过长短期记忆网络训练参数,再输入到softmax网络层得到分类类别的概率分布,... 提出一种基于长短期记忆网络的可以无需预先提取故障特征的轴承故障识别方法。原始的轴承故障振动信号被分成训练集和测试集,将训练集数据映射到线性网络层,通过长短期记忆网络训练参数,再输入到softmax网络层得到分类类别的概率分布,在训练迭代次数达到预设值并且识别准确率收敛之后,测试集数据采用训练好的参数得到分类结果,最后计算预测正确率。模型对含有内外圈和滚动体点蚀故障的轴承数据进行识别试验,结果表明该模型能够有效识别轴承的故障部位和故障程度,与预先提取小波包能量特征的长短期记忆网络模型和支持向量机模型的比较证明该模型识别正确率更高。 展开更多
关键词 轴承故障识别 长短期记忆网络 时间序列 自动提取特征
在线阅读 下载PDF
上一页 1 2 12 下一页 到第
使用帮助 返回顶部