期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于门控循环单元神经网络的测井曲线预测方法 被引量:5
1
作者 滕建强 邱萌 +3 位作者 杨明任 申辉林 曲萨 孙启鹏 《油气地质与采收率》 CAS CSCD 北大核心 2023年第1期93-100,共8页
为了减少泥浆侵入对测井曲线的影响,许多油田采用随钻测井技术,需先预测未钻地层测井曲线,这对随钻测井具有非常重要的指导作用。为此,提出一种基于门控循环单元神经网络(GRU)预测未钻地层测井曲线的方法,该模型将长短期记忆神经网络(LS... 为了减少泥浆侵入对测井曲线的影响,许多油田采用随钻测井技术,需先预测未钻地层测井曲线,这对随钻测井具有非常重要的指导作用。为此,提出一种基于门控循环单元神经网络(GRU)预测未钻地层测井曲线的方法,该模型将长短期记忆神经网络(LSTM)的输入门和遗忘门合并成更新门,输出门变成重置门,使模型结构简单,不易出现过拟合现象,保留LSTM模型的长时记忆功能,且能有效缓解梯度消失或梯度爆炸问题。以新疆油田直井和南海西部油田随钻测井的实际测井数据为例,选取已钻地层以及邻井的自然伽马、深感应电阻率、声波时差、密度和井径5条测井曲线数据作为训练样本输入到LSTM和GRU模型中进行学习训练,将训练好的模型用于预测未钻地层的测井曲线。应用结果表明,GRU比LSTM模型在新疆油田和南海西部油田预测测井曲线的平均相关系数分别提高13.78%和12.13%,平均均方根误差分别下降27.08%和42.17%,GRU模型能够准确地预测未钻地层测井曲线的变化趋势。 展开更多
关键词 随钻测井 时记忆 测井曲线预测 未钻地层 门控循环单元神经网络
在线阅读 下载PDF
基于用户记忆矩阵的长序列推荐算法 被引量:2
2
作者 鹿祥志 孙福振 +2 位作者 王绍卿 董家玮 吴相帅 《智能系统学报》 CSCD 北大核心 2023年第3期517-524,共8页
传统的循环神经网络,如长短期记忆网络和门控循环单元,记忆能力有限而且记忆数据的存取不够灵活,对较长序列的特征捕捉有着先天的不足。记忆网络具有存储长时记忆的特点,而且对于记忆数据的存取更加灵活多变,因此本文在基于会话的推荐... 传统的循环神经网络,如长短期记忆网络和门控循环单元,记忆能力有限而且记忆数据的存取不够灵活,对较长序列的特征捕捉有着先天的不足。记忆网络具有存储长时记忆的特点,而且对于记忆数据的存取更加灵活多变,因此本文在基于会话的推荐算法中引入了记忆网络。本文设计了一个层次化的推荐模型,模型分为2层。第1层为会话级的GRU模型,此模型用来刻画当前会话的序列特征,从而预测下一个项目。第2层为用户级的记忆网络模型,这个模型用来刻画用户长期兴趣的变化。本文提出的模型能有效地捕捉到用户的短期和长期兴趣,进而提升推荐的性能。公开数据集上的实验证明,在会话个数为10相对于会话个数为5的性能提升对比中,本文所提带有用户记忆矩阵的分层网络算法在召回率和平均倒数排名的提升度上相对于分层门控循环单元都有4%的增加。 展开更多
关键词 记忆网络 层次化 期兴趣 短期兴趣 短期记忆网络 门控循环单元 序列推荐 会话推荐
在线阅读 下载PDF
基于COA-GRU的低成本气体传感器数据修正方法
3
作者 李炳伟 叶树霞 +3 位作者 齐亮 张永韡 冯锦 陈宇霆 《仪表技术与传感器》 CSCD 北大核心 2024年第3期120-126,共7页
针对低成本气体传感器在受到温度、湿度、压力、气体交叉干扰等影响时检测精度低的问题,提出了一种长鼻浣熊-门控循环单元神经网络(COA-GRU)的修正模型,用于提高传感器检测精度。首先,根据低成本传感器的非线性特性构建了GRU修正模型;其... 针对低成本气体传感器在受到温度、湿度、压力、气体交叉干扰等影响时检测精度低的问题,提出了一种长鼻浣熊-门控循环单元神经网络(COA-GRU)的修正模型,用于提高传感器检测精度。首先,根据低成本传感器的非线性特性构建了GRU修正模型;其次,利用COA算法解决修正模型的多局部极值以及参数组合寻优问题;最后,利用低成本传感器组以及H200D气体检测装置的实测数据对该方法进行了仿真实验。结果表明,使用COA-GRU修正模型后,SO_(2)、CO、NO_(2)、CO_(2)传感器的平均绝对误差分别降低了72.0%、28.4%、29.6%、13.5%,能够有效提高低成本传感器的检测精度。 展开更多
关键词 气体传感器 长鼻浣熊门控循环单元 修正模型 检测精度
在线阅读 下载PDF
基于残差注意力网络的医疗命名实体识别方法
4
作者 王维欣 徐国愚 《计算机科学与应用》 2024年第11期119-126,共8页
针对临床医疗记录中的复杂语义实体和长短距离依赖关系识别准确率低的难题,文章提出了一种双向语义与残差注意力网络的医疗文本命名实体识别方法。利用BERT-wwm预训练模型捕捉语义特征,结合双向门控循环单元BiGRU用于处理复杂长程语义关... 针对临床医疗记录中的复杂语义实体和长短距离依赖关系识别准确率低的难题,文章提出了一种双向语义与残差注意力网络的医疗文本命名实体识别方法。利用BERT-wwm预训练模型捕捉语义特征,结合双向门控循环单元BiGRU用于处理复杂长程语义关联;增加残差连接的注意力Attention结构,保障专注于关键信息的同时,不会丢失捕捉到的整体序列特征;条件随机场CRF负责最后的序列标注预测,对前序多层神经网络抽取的特征序列进行最优路径解码。实验结果表明,通过本方法能够有效提升命名实体识别的准确率。Aiming at the challenge of low recognition accuracy for complex semantic entities and long- and short-range dependencies in clinical medical records, this paper proposes a medical text named entity recognition method that integrates bidirectional semantics with a residual attention network. The method leverages the BERT-wwm pre-trained model to capture semantic features and combines it with a Bidirectional Gated Recurrent Unit (BiGRU) to handle complex long-range semantic associations. An Attention mechanism with residual connections is added to ensure focus on key information while preserving the overall sequence characteristics captured. A Conditional Random Field (CRF) is responsible for the final sequence labeling prediction, performing optimal path decoding on the feature sequences extracted by the preceding multi-layer neural networks. Experimental results demonstrate that this approach can effectively improve the accuracy of named entity recognition. 展开更多
关键词 残差注意力网络 医疗命名实体识别 双向门控循环单元 短距离依赖
在线阅读 下载PDF
基于LSTM-GRU的污水水质预测模型研究 被引量:6
5
作者 邹可可 李中原 +2 位作者 穆小玲 李铁生 于福荣 《能源与环保》 2021年第12期59-63,共5页
水质预测对水资源管理及水体保护至关重要,为提高污水水质预测模型准确率,考虑到水质参数是一个动态的时间序列,在研究RNN神经网络模型基础上,引入一种改进的长—短记忆网络结构(LSTM-GRU)来增加RNN的隐层,GRU和LSTM采用门结构代替标准... 水质预测对水资源管理及水体保护至关重要,为提高污水水质预测模型准确率,考虑到水质参数是一个动态的时间序列,在研究RNN神经网络模型基础上,引入一种改进的长—短记忆网络结构(LSTM-GRU)来增加RNN的隐层,GRU和LSTM采用门结构代替标准RNN结构中的隐藏单元,可以选择性地记忆重要信息而忘记不重要信息,从而高效学习历史水质参数信息,使得预测结果更加精确。通过仿真分析,本文采用的LSTM-GRU模型与传统的污水水质参数预测模型相比,LSTM-GRU模型的泛化能力更强,预测精度更高,有效性及实用性更强。 展开更多
关键词 水质预测 神经网络 —短记忆模型 门控循环单元
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部