A new recommendation method was presented based on memetic algorithm-based clustering. The proposed method was tested on four highly sparse real-world datasets. Its recommendation performance is evaluated and compared...A new recommendation method was presented based on memetic algorithm-based clustering. The proposed method was tested on four highly sparse real-world datasets. Its recommendation performance is evaluated and compared with that of the frequency-based, user-based, item-based, k-means clustering-based, and genetic algorithm-based methods in terms of precision, recall, and F1 score. The results show that the proposed method yields better performance under the new user cold-start problem when each of new active users selects only one or two items into the basket. The average F1 scores on all four datasets are improved by 225.0%, 61.6%, 54.6%, 49.3%, 28.8%, and 6.3% over the frequency-based, user-based, item-based, k-means clustering-based, and two genetic algorithm-based methods, respectively.展开更多
Recently there has been an increasing interest in applying random walk based methods to recommender systems. We employ a Gaussian random field to model the top-N recommendation task as a semi-supervised learning probl...Recently there has been an increasing interest in applying random walk based methods to recommender systems. We employ a Gaussian random field to model the top-N recommendation task as a semi-supervised learning problem, taking into account the degree of each node on the user-item bipartite graph, and induce an effective absorbing random walk (ARW) algorithm for the top-N recommendation task. Our random walk approach directly generates the top-N recommendations for individuals, rather than predicting the ratings of the recommendations. Experimental results on the two real data sets show that our random walk algorithm significantly outperforms the state-of-the-art random walk based personalized ranking algorithm as well as the popular item-based collaborative filtering method.展开更多
基金supporting by grant fund under the Strategic Scholarships for Frontier Research Network for the PhD Program Thai Doctoral degree
文摘A new recommendation method was presented based on memetic algorithm-based clustering. The proposed method was tested on four highly sparse real-world datasets. Its recommendation performance is evaluated and compared with that of the frequency-based, user-based, item-based, k-means clustering-based, and genetic algorithm-based methods in terms of precision, recall, and F1 score. The results show that the proposed method yields better performance under the new user cold-start problem when each of new active users selects only one or two items into the basket. The average F1 scores on all four datasets are improved by 225.0%, 61.6%, 54.6%, 49.3%, 28.8%, and 6.3% over the frequency-based, user-based, item-based, k-means clustering-based, and two genetic algorithm-based methods, respectively.
基金Project supported by the National Natural Science Foundation of China (Nos. 60525108 and 60533090)the National Hi-Tech Research and Development Program (863) of China (No. 2006AA010107)the Program for Changjiang Scholars and Innovative Research Team in University, China (No. IRT0652)
文摘Recently there has been an increasing interest in applying random walk based methods to recommender systems. We employ a Gaussian random field to model the top-N recommendation task as a semi-supervised learning problem, taking into account the degree of each node on the user-item bipartite graph, and induce an effective absorbing random walk (ARW) algorithm for the top-N recommendation task. Our random walk approach directly generates the top-N recommendations for individuals, rather than predicting the ratings of the recommendations. Experimental results on the two real data sets show that our random walk algorithm significantly outperforms the state-of-the-art random walk based personalized ranking algorithm as well as the popular item-based collaborative filtering method.