In order to study the mechanism of seismic isolation、seismic absorption and the limiting strength of Dougong under the seismic vertical action in Chinese timber structure, by following the building regulation of Ying...In order to study the mechanism of seismic isolation、seismic absorption and the limiting strength of Dougong under the seismic vertical action in Chinese timber structure, by following the building regulation of Ying Zao Fa Shi published in Song Dynasty (960A.D. —1279 A.D.) in China history, the three Dougong models with the scale of 1/3.52 of the prototype structure are made, and on which the limiting strength experiments are carried out. The experimental phenomenon is observed, and the relevant P-△ curves are drawn simultaneously. The tested results show that :under the vertical load,(1) the mechanical behaviors of Dougong can be regarded as linear-elastic mechanic model with varied modulus of elasticity, and expressed with SDOF system; (2) the first cause of the destruction of Dougong is the break of the midmost of Huagong;(3) Dougong plays a very important role in reducing obviously seismic responses of the Chinese timber structure due to the sdismic vertical transmissibility is approximate to 0.019;and ⑷ under the normal condition, the material strain and stress of Dougong are very small, and no more than 1/7 of the limiting, so the abundance of the material strength is quite large. This ensures that many Chinese ancient wooden structures have survived many violent earthquakes and stood over one thousand years.展开更多
A semi-active force tracking PI controller is formulated and analyzed for a magnetorheological (MR) fluid-based damper in conjunction with a quarter-vehicle model. Two different models of the MR-damper are integrated ...A semi-active force tracking PI controller is formulated and analyzed for a magnetorheological (MR) fluid-based damper in conjunction with a quarter-vehicle model. Two different models of the MR-damper are integrated into the closed-loop system model, which includes: a model based upon the mean force-velocity (f-v) behaviour; and a model synthesis comprising inherent nonsmooth hysteretic force and the force limiting properties of the MR damper. The vehicle models are analyzed to study the vibration attenuation performance of the MR-damper using the semi-active force tracking PI control algorithm. The simulation results are also presented to demonstrate the influence of the damper nonlinearity, specifically the hysteresis, on the suspension performance. The results show that the proposed control strategy can yield superior vibration attenuation performance of the vehicle suspension actuated by the controllable MR-damper not only in the sprung mass resonance and the ride zones, but also in the vicinity of the wheel-hop. The results further show that the presence of damper hystersis deteriorates the suspension performance.展开更多
In order to improve the screening efficiency of vibrating screen and make vibration process smooth,a new type of magnetorheological (MR) damper was proposed. The signals of displacement in the vibration process during...In order to improve the screening efficiency of vibrating screen and make vibration process smooth,a new type of magnetorheological (MR) damper was proposed. The signals of displacement in the vibration process during the test were collected. The trispectrum model of autoregressive (AR) time series was built and the correlation dimension was used to quantify the fractal characteristics during the vibration process. The result shows that,in different working conditions,trispectrum slices are applied to obtaining the information of non-Gaussian,nonlinear amplitude?frequency characteristics of the signal. Besides,there is correlation between the correlation dimension of vibration signal and trispectrum slices,which is very important to select the optimum working parameters of the MR damper and vibrating screen. And in the experimental conditions,it is found that when the working current of MR damper is 2 A and the rotation speed of vibration motor is 800 r/min,the vibration screen reaches its maximum screening efficiency.展开更多
Magnetorheological (MR) dampers have been proposed to control the vibration of offshore platforms in this paper. The semi-active control strategy based on fuzzy control algorithm was adopted to determine the optimal...Magnetorheological (MR) dampers have been proposed to control the vibration of offshore platforms in this paper. The semi-active control strategy based on fuzzy control algorithm was adopted to determine the optimal output control force based on the responses of jacket platforms. A typical jacket platform in Mexico Gulf was selected as the numerical example to investigate the effectiveness of the proposed control method. Furthermore, a model experiment was performed to validate the results of the numerical simulation. The experimental model of the jacket platform was designed based on dynamical similarity criterion by the scale of 1:50. Both of the numerical and experimental results show that the semi-active control system with the MR damper can reduce vibrations of jacket platforms effectively and at the same time the control effect is stable.展开更多
Magnetorheological (MR) Dampers offer rapid variation in damping properties, making them ideal in semi-active control of structures. They potentially offer highly reliable operation and can be viewed as fail safe, i...Magnetorheological (MR) Dampers offer rapid variation in damping properties, making them ideal in semi-active control of structures. They potentially offer highly reliable operation and can be viewed as fail safe, in that in the worst case, they become passive dampers. Perfect understanding of the response is necessary when implementing these in operation in conjunction with a control mechanism. There are many models used to predict the behavior of MR dampers. One of these is the Bouc-Wen model. It is extremely popular as it is numerically tractable, very versatile and can exhibit a wide range of hysteretic behavior. It is necessary to first identify the characteristic parameters of the model before response prediction is possible. However, characteristic parameters identification of the Bouc-Wen model needs an experimental base, which has its own limitations. The extraction of these characteristic parameters by trial and error and optimization techniques leaves significant difference between observed and simulated results. This paper deals with a new approach to extract characteristic parameters for the Bouc-Wen model.展开更多
In the preliminary design stage of high-speed train smart suspension,a simple,yet accurate magnetorheological(MR)damper model whose parameters have clear physical meaning is needed.Based on the working mechanism analy...In the preliminary design stage of high-speed train smart suspension,a simple,yet accurate magnetorheological(MR)damper model whose parameters have clear physical meaning is needed.Based on the working mechanism analysis and the dynamic behavior study of the MR damper,a new consecutive viscoelastic plastics(VEP)model is proposed.A methodology to find the parameters of the proposed model directly has been proposed.The comparison with experimental results indicates that the proposed model could adequately characterize the intrinsic nonlinear behavior of the MR damper,including the hysteretic behavior,roll-off phenomenon,and the variation of the hysteresis width in terms of the frequency and magnitude of excitation.The results of experimental testing prove that the accuracy of the proposed model is higher than that of the phenomenological model while only containing four undetermined parameters with clear physical meaning.Moreover,based on the proposed VEP model,a nonlinear stiffness VEP(nkVEP)model is developed with higher precision in the hysteretic region.The nkVEP model,which can reproduce the behavior of the damper with fluctuating input current,is developed.The proposed model could predict accurately the response of the MR damper in a wide range of frequency and displacement.展开更多
文摘In order to study the mechanism of seismic isolation、seismic absorption and the limiting strength of Dougong under the seismic vertical action in Chinese timber structure, by following the building regulation of Ying Zao Fa Shi published in Song Dynasty (960A.D. —1279 A.D.) in China history, the three Dougong models with the scale of 1/3.52 of the prototype structure are made, and on which the limiting strength experiments are carried out. The experimental phenomenon is observed, and the relevant P-△ curves are drawn simultaneously. The tested results show that :under the vertical load,(1) the mechanical behaviors of Dougong can be regarded as linear-elastic mechanic model with varied modulus of elasticity, and expressed with SDOF system; (2) the first cause of the destruction of Dougong is the break of the midmost of Huagong;(3) Dougong plays a very important role in reducing obviously seismic responses of the Chinese timber structure due to the sdismic vertical transmissibility is approximate to 0.019;and ⑷ under the normal condition, the material strain and stress of Dougong are very small, and no more than 1/7 of the limiting, so the abundance of the material strength is quite large. This ensures that many Chinese ancient wooden structures have survived many violent earthquakes and stood over one thousand years.
文摘A semi-active force tracking PI controller is formulated and analyzed for a magnetorheological (MR) fluid-based damper in conjunction with a quarter-vehicle model. Two different models of the MR-damper are integrated into the closed-loop system model, which includes: a model based upon the mean force-velocity (f-v) behaviour; and a model synthesis comprising inherent nonsmooth hysteretic force and the force limiting properties of the MR damper. The vehicle models are analyzed to study the vibration attenuation performance of the MR-damper using the semi-active force tracking PI control algorithm. The simulation results are also presented to demonstrate the influence of the damper nonlinearity, specifically the hysteresis, on the suspension performance. The results show that the proposed control strategy can yield superior vibration attenuation performance of the vehicle suspension actuated by the controllable MR-damper not only in the sprung mass resonance and the ride zones, but also in the vicinity of the wheel-hop. The results further show that the presence of damper hystersis deteriorates the suspension performance.
基金Project(50975098) supported by the National Natural Science Foundation of ChinaProject(2008HZ0002-1) supported by the Major Scientific and Technological Program of Fujian Province,China
文摘In order to improve the screening efficiency of vibrating screen and make vibration process smooth,a new type of magnetorheological (MR) damper was proposed. The signals of displacement in the vibration process during the test were collected. The trispectrum model of autoregressive (AR) time series was built and the correlation dimension was used to quantify the fractal characteristics during the vibration process. The result shows that,in different working conditions,trispectrum slices are applied to obtaining the information of non-Gaussian,nonlinear amplitude?frequency characteristics of the signal. Besides,there is correlation between the correlation dimension of vibration signal and trispectrum slices,which is very important to select the optimum working parameters of the MR damper and vibrating screen. And in the experimental conditions,it is found that when the working current of MR damper is 2 A and the rotation speed of vibration motor is 800 r/min,the vibration screen reaches its maximum screening efficiency.
基金Supported by the National Natural Science Foundation of China (NSFC-5060900).
文摘Magnetorheological (MR) dampers have been proposed to control the vibration of offshore platforms in this paper. The semi-active control strategy based on fuzzy control algorithm was adopted to determine the optimal output control force based on the responses of jacket platforms. A typical jacket platform in Mexico Gulf was selected as the numerical example to investigate the effectiveness of the proposed control method. Furthermore, a model experiment was performed to validate the results of the numerical simulation. The experimental model of the jacket platform was designed based on dynamical similarity criterion by the scale of 1:50. Both of the numerical and experimental results show that the semi-active control system with the MR damper can reduce vibrations of jacket platforms effectively and at the same time the control effect is stable.
文摘Magnetorheological (MR) Dampers offer rapid variation in damping properties, making them ideal in semi-active control of structures. They potentially offer highly reliable operation and can be viewed as fail safe, in that in the worst case, they become passive dampers. Perfect understanding of the response is necessary when implementing these in operation in conjunction with a control mechanism. There are many models used to predict the behavior of MR dampers. One of these is the Bouc-Wen model. It is extremely popular as it is numerically tractable, very versatile and can exhibit a wide range of hysteretic behavior. It is necessary to first identify the characteristic parameters of the model before response prediction is possible. However, characteristic parameters identification of the Bouc-Wen model needs an experimental base, which has its own limitations. The extraction of these characteristic parameters by trial and error and optimization techniques leaves significant difference between observed and simulated results. This paper deals with a new approach to extract characteristic parameters for the Bouc-Wen model.
基金supported by grant from the Innovation and Technology Support Program of the Hong Kong Special Administrative Region,China(Project No.ITS/241/11)the National Natural Science Foundation of China(Grant No.61134002)the National Basic Research Program of China("973" Program)(Grant No.2011CB711106)
文摘In the preliminary design stage of high-speed train smart suspension,a simple,yet accurate magnetorheological(MR)damper model whose parameters have clear physical meaning is needed.Based on the working mechanism analysis and the dynamic behavior study of the MR damper,a new consecutive viscoelastic plastics(VEP)model is proposed.A methodology to find the parameters of the proposed model directly has been proposed.The comparison with experimental results indicates that the proposed model could adequately characterize the intrinsic nonlinear behavior of the MR damper,including the hysteretic behavior,roll-off phenomenon,and the variation of the hysteresis width in terms of the frequency and magnitude of excitation.The results of experimental testing prove that the accuracy of the proposed model is higher than that of the phenomenological model while only containing four undetermined parameters with clear physical meaning.Moreover,based on the proposed VEP model,a nonlinear stiffness VEP(nkVEP)model is developed with higher precision in the hysteretic region.The nkVEP model,which can reproduce the behavior of the damper with fluctuating input current,is developed.The proposed model could predict accurately the response of the MR damper in a wide range of frequency and displacement.