期刊导航
期刊开放获取
唐山市科学技术情报研究..
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于改进型级联宽度学习的采煤机截割部齿轮箱故障诊断
1
作者
李鑫
李淑华
+3 位作者
陈浩
司垒
魏东
邹筱瑜
《工矿自动化》
北大核心
2025年第3期86-95,共10页
采煤机截割部齿轮箱振动监测数据结构复杂,且易出现类别不平衡问题,导致现有基于传统机器学习的智能故障诊断方法易出现错报现象,而基于深度学习的诊断方法模型结构复杂、学习效率低,且易陷入局部最优解,影响诊断性能。针对上述问题,提...
采煤机截割部齿轮箱振动监测数据结构复杂,且易出现类别不平衡问题,导致现有基于传统机器学习的智能故障诊断方法易出现错报现象,而基于深度学习的诊断方法模型结构复杂、学习效率低,且易陷入局部最优解,影响诊断性能。针对上述问题,提出了一种基于改进型级联宽度学习(ICBL)的采煤机截割部齿轮箱故障诊断方法。在ICBL模型的特征节点中引入随机超图卷积机制,充分挖掘采煤机截割部齿轮箱振动数据的复杂多元结构信息,增强故障特征表征能力;采用类特异性权重分配策略,根据输入数据的类间比例信息,为少数类样本赋予更高权重,提高不平衡数据下采煤机截割部齿轮箱故障诊断性能。利用采煤机截割部齿轮箱故障模拟实验台验证基于ICBL的采煤机截割部齿轮箱故障诊断方法的有效性,结果表明该方法能够有效增强故障特征的判别性,在数据不平衡度为15时诊断精度达94.52%,单一样本的故障识别耗时为0.284 ms,优于级联宽度学习系统、加权宽度学习系统、多尺度卷积神经网络、超图神经网络、多分辨率超图卷积网络等。
展开更多
关键词
采煤机截割部
齿轮箱
故障诊断
级联宽度学习
随机超图卷积
类特异性权重
在线阅读
下载PDF
职称材料
题名
基于改进型级联宽度学习的采煤机截割部齿轮箱故障诊断
1
作者
李鑫
李淑华
陈浩
司垒
魏东
邹筱瑜
机构
中国矿业大学机电工程学院
智能采矿装备技术全国重点实验室
出处
《工矿自动化》
北大核心
2025年第3期86-95,共10页
基金
国家自然科学基金项目(52404178)
江苏省自然科学基金项目(BK20231064)。
文摘
采煤机截割部齿轮箱振动监测数据结构复杂,且易出现类别不平衡问题,导致现有基于传统机器学习的智能故障诊断方法易出现错报现象,而基于深度学习的诊断方法模型结构复杂、学习效率低,且易陷入局部最优解,影响诊断性能。针对上述问题,提出了一种基于改进型级联宽度学习(ICBL)的采煤机截割部齿轮箱故障诊断方法。在ICBL模型的特征节点中引入随机超图卷积机制,充分挖掘采煤机截割部齿轮箱振动数据的复杂多元结构信息,增强故障特征表征能力;采用类特异性权重分配策略,根据输入数据的类间比例信息,为少数类样本赋予更高权重,提高不平衡数据下采煤机截割部齿轮箱故障诊断性能。利用采煤机截割部齿轮箱故障模拟实验台验证基于ICBL的采煤机截割部齿轮箱故障诊断方法的有效性,结果表明该方法能够有效增强故障特征的判别性,在数据不平衡度为15时诊断精度达94.52%,单一样本的故障识别耗时为0.284 ms,优于级联宽度学习系统、加权宽度学习系统、多尺度卷积神经网络、超图神经网络、多分辨率超图卷积网络等。
关键词
采煤机截割部
齿轮箱
故障诊断
级联宽度学习
随机超图卷积
类特异性权重
Keywords
shearer cutting unit
gearbox
fault diagnosis
cascaded broad learning
random hypergraph convolution
class-specific weight
分类号
TD67 [矿业工程—矿山机电]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于改进型级联宽度学习的采煤机截割部齿轮箱故障诊断
李鑫
李淑华
陈浩
司垒
魏东
邹筱瑜
《工矿自动化》
北大核心
2025
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部