This paper applied Maximum Entropy (ME) model to Pinyin-To-Character (PTC) conversion in-stead of Hidden Markov Model (HMM) that could not include complicated and long-distance lexical informa-tion. Two ME models were...This paper applied Maximum Entropy (ME) model to Pinyin-To-Character (PTC) conversion in-stead of Hidden Markov Model (HMM) that could not include complicated and long-distance lexical informa-tion. Two ME models were built based on simple and complex templates respectively, and the complex one gave better conversion result. Furthermore, conversion trigger pair of y A → y B cBwas proposed to extract the long-distance constrain feature from the corpus; and then Average Mutual Information (AMI) was used to se-lect conversion trigger pair features which were added to the ME model. The experiment shows that conver-sion error of the ME with conversion trigger pairs is reduced by 4% on a small training corpus, comparing with HMM smoothed by absolute smoothing.展开更多
A face recognition system based on Support Vector Machine (SVM) and Hidden Markov Model (HMM) has been proposed. The powerful discriminative ability of SVM is combined with the temporal modeling ability of HMM. The ou...A face recognition system based on Support Vector Machine (SVM) and Hidden Markov Model (HMM) has been proposed. The powerful discriminative ability of SVM is combined with the temporal modeling ability of HMM. The output of SVM is moderated to be probability output, which replaces the Mixture of Gauss (MOG) in HMM. Wavelet transformation is used to extract observation vector, which reduces the data dimension and improves the robustness.The hybrid system is compared with pure HMM face recognition method based on ORL face database and Yale face database. Experiments results show that the hybrid method has better performance.展开更多
Web pre-fetching is one of the most popular strategies, which are proposed for reducing the perceived access delay and improving the service quality of web server. In this paper, we present a pre-fetching model based ...Web pre-fetching is one of the most popular strategies, which are proposed for reducing the perceived access delay and improving the service quality of web server. In this paper, we present a pre-fetching model based an the hidden Markov model, which mines the later information requirement concepts that the user's access path contains and makes semantic-based pre-fetching decisions. Experimental results show that our schcme has better predictive pre-fetching precision.展开更多
基金Supported by the National Natural Science Foundation of China as key program (No.60435020) and The HighTechnology Research and Development Programme of China (2002AA117010-09).
文摘This paper applied Maximum Entropy (ME) model to Pinyin-To-Character (PTC) conversion in-stead of Hidden Markov Model (HMM) that could not include complicated and long-distance lexical informa-tion. Two ME models were built based on simple and complex templates respectively, and the complex one gave better conversion result. Furthermore, conversion trigger pair of y A → y B cBwas proposed to extract the long-distance constrain feature from the corpus; and then Average Mutual Information (AMI) was used to se-lect conversion trigger pair features which were added to the ME model. The experiment shows that conver-sion error of the ME with conversion trigger pairs is reduced by 4% on a small training corpus, comparing with HMM smoothed by absolute smoothing.
基金This project is supported by the National Natural Science Foundation of China (No. 69889050)
文摘A face recognition system based on Support Vector Machine (SVM) and Hidden Markov Model (HMM) has been proposed. The powerful discriminative ability of SVM is combined with the temporal modeling ability of HMM. The output of SVM is moderated to be probability output, which replaces the Mixture of Gauss (MOG) in HMM. Wavelet transformation is used to extract observation vector, which reduces the data dimension and improves the robustness.The hybrid system is compared with pure HMM face recognition method based on ORL face database and Yale face database. Experiments results show that the hybrid method has better performance.
基金The research is supported by the National Natural Science Foundation of China(No. 60082003)
文摘Web pre-fetching is one of the most popular strategies, which are proposed for reducing the perceived access delay and improving the service quality of web server. In this paper, we present a pre-fetching model based an the hidden Markov model, which mines the later information requirement concepts that the user's access path contains and makes semantic-based pre-fetching decisions. Experimental results show that our schcme has better predictive pre-fetching precision.