To address the issue of low measurement accuracy caused by noise interference in the acquisition of low fluid flow rate signals with ultrasonic Doppler flow meters,a novel signal processing algorithm that combines ens...To address the issue of low measurement accuracy caused by noise interference in the acquisition of low fluid flow rate signals with ultrasonic Doppler flow meters,a novel signal processing algorithm that combines ensemble empirical mode decomposition(EEMD)and cross-correlation algorithm was proposed.Firstly,a fast Fourier transform(FFT)spectrum analysis was utilized to ascertain the frequency range of the signal.Secondly,data acquisition was conducted at an appropriate sampling frequency,and the acquired Doppler flow rate signal was then decomposed into a series of intrinsic mode functions(IMFs)by EEMD.Subsequently,these decomposed IMFs were recombined based on their energy entropy,and then the noise of the recombined Doppler flow rate signal was removed by cross-correlation filtering.Finally,an ideal ultrasonic Doppler flow rate signal was extracted.Simulation and experimental verification show that the proposed Doppler flow signal processing method can effectively enhance the signal-to-noise ratio(SNR)and extend the lower limit of measurement of the ultrasonic Doppler flow meter.展开更多
To better retain useful weak low-frequency magnetotelluric(MT)signals with strong interference during MT data processing,we propose a SVM-CEEMDWT based MT data signal-noise separation method,which extracts the weak MT...To better retain useful weak low-frequency magnetotelluric(MT)signals with strong interference during MT data processing,we propose a SVM-CEEMDWT based MT data signal-noise separation method,which extracts the weak MT signal affected by strong interference.First,the approximate entropy,fuzzy entropy,sample entropy,and Lempel-Ziv(LZ)complexity are extracted from the magnetotelluric data.Then,four robust parameters are used as the inputs to the support vector machine(SVM)to train the sample library and build a model based on the different complexity of signals.Based on this model,we can only consider time series with strong interference when using the complementary ensemble empirical mode decomposition(CEEMD)and wavelet threshold(WT)for noise suppression.Simulation results suggest that the SVM based on the robust parameters can distinguish the time periods with strong interference well before noise suppression.Compared with the CEEMD WT,the proposed SVM-CEEMDWT method retains more low-frequency low-variability information,and the apparent resistivity curve is smoother and more continuous.Moreover,the results better reflect the deep electrical structure in the field.展开更多
A filter method that combines ensemble empirical modal decomposition(EEMD)and wavelet analysis methods was proposed to separate and correct the global navigation satellite system(GNSS)multipath error more effectively....A filter method that combines ensemble empirical modal decomposition(EEMD)and wavelet analysis methods was proposed to separate and correct the global navigation satellite system(GNSS)multipath error more effectively.In this method,the GNSS signal is first decomposed into several intrinsic mode functions(IMFs)and a residual through EEMD.Then,the IMFs and residual are classified into noise terms,mixed terms,and useful terms according to a combined classification criterion.Finally,the mixed term denoised by wavelet and the useful term are reconstructed to obtain the multipath error and thus enable an error correction model to be built.The measurement data provided by the Curtin GNSS Research Center were used for processing and analysis.Results show that the proposed method can separate multipath error from GNSS data to a great extent,thereby effectively addressing the defects of EEMD and wavelet methods on multipath error weakening.The error correction model established with the separated multipath error has a higher accuracy and provides a certain reference value for research on related signal processing.展开更多
基金supported by National Natural Science Foundation of China(No.61973234)Tianjin Science and Technology Plan Project(No.22YDTPJC00090)。
文摘To address the issue of low measurement accuracy caused by noise interference in the acquisition of low fluid flow rate signals with ultrasonic Doppler flow meters,a novel signal processing algorithm that combines ensemble empirical mode decomposition(EEMD)and cross-correlation algorithm was proposed.Firstly,a fast Fourier transform(FFT)spectrum analysis was utilized to ascertain the frequency range of the signal.Secondly,data acquisition was conducted at an appropriate sampling frequency,and the acquired Doppler flow rate signal was then decomposed into a series of intrinsic mode functions(IMFs)by EEMD.Subsequently,these decomposed IMFs were recombined based on their energy entropy,and then the noise of the recombined Doppler flow rate signal was removed by cross-correlation filtering.Finally,an ideal ultrasonic Doppler flow rate signal was extracted.Simulation and experimental verification show that the proposed Doppler flow signal processing method can effectively enhance the signal-to-noise ratio(SNR)and extend the lower limit of measurement of the ultrasonic Doppler flow meter.
基金funded by the National Key R&D Program of China(No.2018YFC0603202)the National Natural Science Foundation of China(No.41404111)+1 种基金Natural Science Foundation of Hunan Province(No.2018JJ2258)Hunan Provincial Science and Technology Project Foundation(No.2018TP1018)
文摘To better retain useful weak low-frequency magnetotelluric(MT)signals with strong interference during MT data processing,we propose a SVM-CEEMDWT based MT data signal-noise separation method,which extracts the weak MT signal affected by strong interference.First,the approximate entropy,fuzzy entropy,sample entropy,and Lempel-Ziv(LZ)complexity are extracted from the magnetotelluric data.Then,four robust parameters are used as the inputs to the support vector machine(SVM)to train the sample library and build a model based on the different complexity of signals.Based on this model,we can only consider time series with strong interference when using the complementary ensemble empirical mode decomposition(CEEMD)and wavelet threshold(WT)for noise suppression.Simulation results suggest that the SVM based on the robust parameters can distinguish the time periods with strong interference well before noise suppression.Compared with the CEEMD WT,the proposed SVM-CEEMDWT method retains more low-frequency low-variability information,and the apparent resistivity curve is smoother and more continuous.Moreover,the results better reflect the deep electrical structure in the field.
基金The National Natural Science Foundation of China(No.41974030)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX17_0150).
文摘A filter method that combines ensemble empirical modal decomposition(EEMD)and wavelet analysis methods was proposed to separate and correct the global navigation satellite system(GNSS)multipath error more effectively.In this method,the GNSS signal is first decomposed into several intrinsic mode functions(IMFs)and a residual through EEMD.Then,the IMFs and residual are classified into noise terms,mixed terms,and useful terms according to a combined classification criterion.Finally,the mixed term denoised by wavelet and the useful term are reconstructed to obtain the multipath error and thus enable an error correction model to be built.The measurement data provided by the Curtin GNSS Research Center were used for processing and analysis.Results show that the proposed method can separate multipath error from GNSS data to a great extent,thereby effectively addressing the defects of EEMD and wavelet methods on multipath error weakening.The error correction model established with the separated multipath error has a higher accuracy and provides a certain reference value for research on related signal processing.