非侵入式负荷监测(non-intrusive load monitoring,NILM)技术绿色节能,已成为电力系统负荷监测的发展趋势。集成学习方法可有效提高负荷识别性能,但其基学习器的优化选择和权重设置问题亟待解决。文中以一种典型智能电表对8种小型用电...非侵入式负荷监测(non-intrusive load monitoring,NILM)技术绿色节能,已成为电力系统负荷监测的发展趋势。集成学习方法可有效提高负荷识别性能,但其基学习器的优化选择和权重设置问题亟待解决。文中以一种典型智能电表对8种小型用电设备及其混合负荷的高频实测实验为基础,基于递归特征消除(recursive feature elimination,RFE)法选择最优特征组合,提出结合准确率和多样性权衡的基学习器组合优化方法,并引入香农熵设置投票权重,形成一种新颖的基于香农熵加权投票的集成式NILM识别方法。通过在自测数据集和公开的全球家庭和行业瞬态能量数据集(worldwide household and industry transient energy dataset,WHITED)验证,与常用集成方法比较,该方法识别准确率高、运行时间短且稳定性高。展开更多
Rockburst prediction is of vital significance to the design and construction of underground hard rock mines.A rockburst database consisting of 102 case histories,i.e.,1998−2011 period data from 14 hard rock mines was ...Rockburst prediction is of vital significance to the design and construction of underground hard rock mines.A rockburst database consisting of 102 case histories,i.e.,1998−2011 period data from 14 hard rock mines was examined for rockburst prediction in burst-prone mines by three tree-based ensemble methods.The dataset was examined with six widely accepted indices which are:the maximum tangential stress around the excavation boundary(MTS),uniaxial compressive strength(UCS)and uniaxial tensile strength(UTS)of the intact rock,stress concentration factor(SCF),rock brittleness index(BI),and strain energy storage index(EEI).Two boosting(AdaBoost.M1,SAMME)and bagging algorithms with classification trees as baseline classifier on ability to learn rockburst were evaluated.The available dataset was randomly divided into training set(2/3 of whole datasets)and testing set(the remaining datasets).Repeated 10-fold cross validation(CV)was applied as the validation method for tuning the hyper-parameters.The margin analysis and the variable relative importance were employed to analyze some characteristics of the ensembles.According to 10-fold CV,the accuracy analysis of rockburst dataset demonstrated that the best prediction method for the potential of rockburst is bagging when compared to AdaBoost.M1,SAMME algorithms and empirical criteria methods.展开更多
文摘非侵入式负荷监测(non-intrusive load monitoring,NILM)技术绿色节能,已成为电力系统负荷监测的发展趋势。集成学习方法可有效提高负荷识别性能,但其基学习器的优化选择和权重设置问题亟待解决。文中以一种典型智能电表对8种小型用电设备及其混合负荷的高频实测实验为基础,基于递归特征消除(recursive feature elimination,RFE)法选择最优特征组合,提出结合准确率和多样性权衡的基学习器组合优化方法,并引入香农熵设置投票权重,形成一种新颖的基于香农熵加权投票的集成式NILM识别方法。通过在自测数据集和公开的全球家庭和行业瞬态能量数据集(worldwide household and industry transient energy dataset,WHITED)验证,与常用集成方法比较,该方法识别准确率高、运行时间短且稳定性高。
基金Projects(41807259,51604109)supported by the National Natural Science Foundation of ChinaProject(2020CX040)supported by the Innovation-Driven Project of Central South University,ChinaProject(2018JJ3693)supported by the Natural Science Foundation of Hunan Province,China。
文摘Rockburst prediction is of vital significance to the design and construction of underground hard rock mines.A rockburst database consisting of 102 case histories,i.e.,1998−2011 period data from 14 hard rock mines was examined for rockburst prediction in burst-prone mines by three tree-based ensemble methods.The dataset was examined with six widely accepted indices which are:the maximum tangential stress around the excavation boundary(MTS),uniaxial compressive strength(UCS)and uniaxial tensile strength(UTS)of the intact rock,stress concentration factor(SCF),rock brittleness index(BI),and strain energy storage index(EEI).Two boosting(AdaBoost.M1,SAMME)and bagging algorithms with classification trees as baseline classifier on ability to learn rockburst were evaluated.The available dataset was randomly divided into training set(2/3 of whole datasets)and testing set(the remaining datasets).Repeated 10-fold cross validation(CV)was applied as the validation method for tuning the hyper-parameters.The margin analysis and the variable relative importance were employed to analyze some characteristics of the ensembles.According to 10-fold CV,the accuracy analysis of rockburst dataset demonstrated that the best prediction method for the potential of rockburst is bagging when compared to AdaBoost.M1,SAMME algorithms and empirical criteria methods.