The static behavior of piezoelectric circular spherical shallow shells under both electrical and mechanical loads is studied by using the differential quadrature element method (DQEM). Geometrical nonlinearity effect ...The static behavior of piezoelectric circular spherical shallow shells under both electrical and mechanical loads is studied by using the differential quadrature element method (DQEM). Geometrical nonlinearity effect is considered. Detailed formulations and procedures are given for the first time. Several examples are analyzed and accurate results are obtained by the DQEM. Based on the results in this paper, one may conclude that the DQEM is a useful tool for obtaining solutions of structural elements. It can be seen that the shell shape may be theore tically controlled and snap through may occur when the applied voltage reaches a critical value even without mechanical load for certain geometric configurations.展开更多
The ultrasonic motor (USM) possesses heavy nonlinearities which vary with driving conditions and load-dependent characteristics such as the dead-zone. In this paper, an identification method for the rotary travelling-...The ultrasonic motor (USM) possesses heavy nonlinearities which vary with driving conditions and load-dependent characteristics such as the dead-zone. In this paper, an identification method for the rotary travelling-wave type ultrasonic motor (RTWUSM) with dead-zone is proposed based on a modified Hammerstein model structure. The driving voltage contributing effect on the nonlinearities of the RTWUSM was transformed to the change of dynamic parameters against the driving voltage. The dead-zone of the RTWUSM is identified based upon the above transformation. Experiment results showed good agreement be- tween the output of the proposed model and actual measured output.展开更多
In Cognitive Radio(CR)networks,there is a common assumption that secondary devices always obey commands and are under full control.However,this assumption may become unrealistic for future CR networks with more intell...In Cognitive Radio(CR)networks,there is a common assumption that secondary devices always obey commands and are under full control.However,this assumption may become unrealistic for future CR networks with more intelligent,sophisticated and autonomous devices.Imperfect spectrum sensing and illegal behaviour of secondary users can result in harmful interference to primary users.In this paper,we propose a novel concept of Proactive-Optimization CR(POCR)networks,in which highly intelligent secondary users always try to proactively consider potentially harmful interference when making their behaviour decision.Furthermore,we propose an optimal transmission behaviour decision scheme for secondary users in POCR networks considering the possible harmful interference and penalties from primary users.Specifically,we formulate the system as a Partially-Observable Markov Decision Process(POMDP)problem.With this formulation,a low-complexity dynamic programming framework is presented to obtain the optimal behaviour policy.Extensive simulation results are presented to illustrate the significant performance improvement of the proposed scheme compared with the existing one that ignores the proactive-optimization of secondary users.展开更多
Nonlinear resistivity inversion requires efficient artificial neural network(ANN)model for better inversion results.An evolutionary BP neural network(BPNN)approach based on differential evolution(DE)algorithm was pres...Nonlinear resistivity inversion requires efficient artificial neural network(ANN)model for better inversion results.An evolutionary BP neural network(BPNN)approach based on differential evolution(DE)algorithm was presented,which was able to improve global search ability for resistivity tomography 2-D nonlinear inversion.In the proposed method,Tent equation was applied to obtain automatic parameter settings in DE and the restricted parameter Fcrit was used to enhance the ability of converging to global optimum.An implementation of proposed DE-BPNN was given,the network had one hidden layer with 52 nodes and it was trained on 36 datasets and tested on another 4 synthetic datasets.Two abnormity models were used to verify the feasibility and effectiveness of the proposed method,the results show that the proposed DE-BP algorithm has better performance than BP,conventional DE-BP and other chaotic DE-BP methods in stability and accuracy,and higher imaging quality than least square inversion.展开更多
A relevance vector machine (RVM) based fault diagnosis method was presented for non-linear circuits. In order to simplify RVM classifier, parameters selection based on particle swarm optimization (PSO) and preprocessi...A relevance vector machine (RVM) based fault diagnosis method was presented for non-linear circuits. In order to simplify RVM classifier, parameters selection based on particle swarm optimization (PSO) and preprocessing technique based on the kurtosis and entropy of signals were used. Firstly, sinusoidal inputs with different frequencies were applied to the circuit under test (CUT). Then, the resulting frequency responses were sampled to generate features. The frequency response was sampled to compute its kurtosis and entropy, which can show the information capacity of signal. By analyzing the output signals, the proposed method can detect and identify faulty components in circuits. The results indicate that the fault classes can be classified correctly for at least 99% of the test data in example circuit. And the proposed method can diagnose hard and soft faults.展开更多
The paper deals with analysis and synthesis of non-harmonic and non-linear sources and appliances, and their interaction with harmonic power supply network. Basic idea is based on knowledge of harmonic spectrum of the...The paper deals with analysis and synthesis of non-harmonic and non-linear sources and appliances, and their interaction with harmonic power supply network. Basic idea is based on knowledge of harmonic spectrum of the sources and/or appliances, respectively. Obviously, one need to know voltage harmonic components of voltage sources (renewable with inverters,...), and current harmonic components generated by non-linear appliances (rectifiers,...). Method of investigation lies on decomposition of real electric circuit into n-harmonic separated equivalent schemes for each harmonic component. Then transient analysis will be done for each scheme separately using "impedance harmonic matrices". The important fact is that each equivalent scheme is now linearized and therefore easily calculated. Finally, the effects of each investigated schemes arc summed into resulting quantities of real non-linear electric circuit.展开更多
The article states about reactive power compensation methods for circuits with non-sinusoidal voltages. An basic introduction to reactive power theory has been given, together with the optimal capacitance selection th...The article states about reactive power compensation methods for circuits with non-sinusoidal voltages. An basic introduction to reactive power theory has been given, together with the optimal capacitance selection theory. There have been presented selected theories application in order to compensate the reactive power in one-phase circuits. The measurement results before the compensation have been discussed and measurement results after compensation of an actual object supplied from an non-sinusoidal voltage source were presented. The algorithms of optimal capacity selection were given, which connected in parallel to the circuit with inductive character will cause current root-mean-square value minimization. The measurement results after applying the reactive power minimization algorithm have shown improvement in compensation of strongly nonlinear receivers supplied with distorted signals.展开更多
Nonlinear static analysis of piezoelectric plates has been carried out using nonlinear finite element method considering electro-mechanical coupling,The geometrical nonlinearity has been taken into account and electri...Nonlinear static analysis of piezoelectric plates has been carried out using nonlinear finite element method considering electro-mechanical coupling,The geometrical nonlinearity has been taken into account and electric potential is assumed to be quadratic across the plate thickness,The governing equations are obtained using potential energy and Hamilton's principle that includes elastic and piezoelectric effects.The finite element model is derived based on constitutive equation of piezoelectric material accounting for coupling between elasticity and electric effect using higher order plate elements,Results are presented for piezoelectric plate under different mechanical boundary conditions,Numerical results for the plate are given in dimensionless graphical forms.Effects of boundary conditions on linear and nonlinear response of the plate are also studied.The numerical results obtained by the present model are in good agreement with the available solutions reported in the literature.展开更多
This paper proposes a parameter determination method of distribution voltage regulators load ratio control transformers (LRT) and step voltage regulators (SVR) considering the tap change and voltage profile. The m...This paper proposes a parameter determination method of distribution voltage regulators load ratio control transformers (LRT) and step voltage regulators (SVR) considering the tap change and voltage profile. The method takes two procedures in order to simplify the optimization problem and to reduce calculation time. One is to simultaneously determine the control parameters of LRT and SVR minimizing voltage violations and voltage variations. The algorithm is based on particle swarm optimization (PSO), which is one of non-linear optimization methods by using a concept of swarm intelligence. Another is to determine the dead-band width of LRT and SVR on the basis of bi-evaluation of tap change and voltage margin. The concept of a Pareto optimal solution is used for the decision of the best dead-band width. As the results of numerical simulations using distribution network model, the validity of the proposed method has been affirmed.展开更多
The advantages of OPV (organic photovoltaic) are low cost, little pollution and flexible. But challenge for OPV manufacture still is lacking of accurately performance measurement due to capacitance issue. Firstly, c...The advantages of OPV (organic photovoltaic) are low cost, little pollution and flexible. But challenge for OPV manufacture still is lacking of accurately performance measurement due to capacitance issue. Firstly, characterization of OPV requires considering the slowly temporal response due to capacitance effect, and the relative I-V (current-voltage) curves are strongly dependent on the voltage sweep direction, even for the sweep time only in few seconds or less. Secondly, the IPCE (incident photon-to-electron conversion efficiency) also shows the slowly temporal response due to capacitance effect and is dependent on the wavelength of the incident light. Furthermore, the related features for measuring I-V curves are more sensitive with temperature due to non-linear characteristics issue, but current IPCE spectra of OPV are similar to that happened in conventional crystalline Si or amorphous silicon devices. In this work, we developed a RTOSM (real-time one-sweep method) applied both in I-V and IPCE to analysis different electronic transport materials, and result showed this new approach proposed a good way to slow down testing time and having better accuracy for OPV measurement by eliminating acceptance effect instantly.展开更多
Gallium-tin oxide(GTO) semiconductor thin films were prepared by spin-coating with 2-methoxyethanol as the solvent. Their crystal structures, optical transparency,chemical states and surface morphologies, along with t...Gallium-tin oxide(GTO) semiconductor thin films were prepared by spin-coating with 2-methoxyethanol as the solvent. Their crystal structures, optical transparency,chemical states and surface morphologies, along with the electrical properties, were dependent on Ga contents and annealing temperatures. The optimized GTO channel layer was applied in the high-k Al2O3 thin film transistor(TFT) with a low operation voltage of 2 V, a maximum field-effect mobility of 69 cm^2 V^-1 s^-1, a subthreshold swing(SS) of 76 mV dec^-1, a threshold voltage of 0.67 V and an on-off current ratio of 1.8×10^7. The solution-processed amorphousGTO-TFTs would promote the development of low-consumption, low-cost and high performance In-free TFT devices.展开更多
We study a class of semilinear SchrSdinger equation with electromagnetic fields and the nonlinearity term involving critical growth. We assume that the potential of the equation includes a parameter A and can be negat...We study a class of semilinear SchrSdinger equation with electromagnetic fields and the nonlinearity term involving critical growth. We assume that the potential of the equation includes a parameter A and can be negative in some domain. Moreover, the potential behaves like potential well when the parameter A is large. Using variational methods combining Nehari methods, we prove that the equation has a least energy solution which, as the parameter A becomes large, localized near the bottom of the potential well. Our result is an extension of the corresponding result for the SchrSdinger equation which involves critical growth but does not involve electromagnetic fields.展开更多
To simulate the nonlinear behavior of ferroelectric structures and devices under non-uniform electromechanical loadings,a domain-switching embedded electromechanical finite element method is developed in this paper.Fo...To simulate the nonlinear behavior of ferroelectric structures and devices under non-uniform electromechanical loadings,a domain-switching embedded electromechanical finite element method is developed in this paper.Following continuum assumption,the electromechanical behavior of each representative material point can be obtained by averaging the behavior of the local corresponding microstructure,e.g.42 domains used in this work.A new Double Gibbs free energy criterion for domain-switching is proposed to ensure the convergence and stability of the simulations on ferroelectrics under non-uniform field.Several computational examples are given to demonstrate that this nonlinear finite element method can yield reasonable and stable simulation results which can be used to explain some experimental results and assist the design of ferroelectric devices.展开更多
With the level of short-circuit current of power systems growing increasingly higher,optimal allocation of current limiters has received considerable attention in recent years,especially in China.This paper analyzes t...With the level of short-circuit current of power systems growing increasingly higher,optimal allocation of current limiters has received considerable attention in recent years,especially in China.This paper analyzes two kinds of common used current limiters based on the increment of bus impedance matrix and proposes a multi-objective current limiters configuration model considering the investment of limiters,the level of short-circuit current,as well as the transient stability of power system.An innovative search space reduction technique based on sensitivity factor is introduced to choose better candidate locations for current limiters so as to avoid the curse of dimensionality.The elitist non-dominated sorting genetic algorithm II is used to search the Pareto-optimal solutions of the proposed model.In order to further improve optimization efficiency,master-slave parallel modification of NSGA-II program structure is implemented.The satisfactory case study results demonstrate the feasibility of the proposed multi-objective method in power system current limiters allocation associated with cost,security and stability.展开更多
文摘The static behavior of piezoelectric circular spherical shallow shells under both electrical and mechanical loads is studied by using the differential quadrature element method (DQEM). Geometrical nonlinearity effect is considered. Detailed formulations and procedures are given for the first time. Several examples are analyzed and accurate results are obtained by the DQEM. Based on the results in this paper, one may conclude that the DQEM is a useful tool for obtaining solutions of structural elements. It can be seen that the shell shape may be theore tically controlled and snap through may occur when the applied voltage reaches a critical value even without mechanical load for certain geometric configurations.
基金Project supported by the National Natural Science Foundation of China (No. 60572055)the Natural Science Foundation of Guangxi Province (No. 0339068), China
文摘The ultrasonic motor (USM) possesses heavy nonlinearities which vary with driving conditions and load-dependent characteristics such as the dead-zone. In this paper, an identification method for the rotary travelling-wave type ultrasonic motor (RTWUSM) with dead-zone is proposed based on a modified Hammerstein model structure. The driving voltage contributing effect on the nonlinearities of the RTWUSM was transformed to the change of dynamic parameters against the driving voltage. The dead-zone of the RTWUSM is identified based upon the above transformation. Experiment results showed good agreement be- tween the output of the proposed model and actual measured output.
基金supported in part by the National Natural Science Foundation of China under Grants No. 61101113,No. 61072088,No.61201198the Beijing Natural Science Foundation under Grants No. 4132007,No. 4132015,No. 4132019the Research Fund for the Doctoral Program of Higher Education of China under Grant No. 20111103120017
文摘In Cognitive Radio(CR)networks,there is a common assumption that secondary devices always obey commands and are under full control.However,this assumption may become unrealistic for future CR networks with more intelligent,sophisticated and autonomous devices.Imperfect spectrum sensing and illegal behaviour of secondary users can result in harmful interference to primary users.In this paper,we propose a novel concept of Proactive-Optimization CR(POCR)networks,in which highly intelligent secondary users always try to proactively consider potentially harmful interference when making their behaviour decision.Furthermore,we propose an optimal transmission behaviour decision scheme for secondary users in POCR networks considering the possible harmful interference and penalties from primary users.Specifically,we formulate the system as a Partially-Observable Markov Decision Process(POMDP)problem.With this formulation,a low-complexity dynamic programming framework is presented to obtain the optimal behaviour policy.Extensive simulation results are presented to illustrate the significant performance improvement of the proposed scheme compared with the existing one that ignores the proactive-optimization of secondary users.
基金Project(20120162110015)supported by the Research Fund for the Doctoral Program of Higher Education,ChinaProject(41004053)supported by the National Natural Science Foundation of ChinaProject(12c0241)supported by Scientific Research Fund of Hunan Provincial Education Department,China
文摘Nonlinear resistivity inversion requires efficient artificial neural network(ANN)model for better inversion results.An evolutionary BP neural network(BPNN)approach based on differential evolution(DE)algorithm was presented,which was able to improve global search ability for resistivity tomography 2-D nonlinear inversion.In the proposed method,Tent equation was applied to obtain automatic parameter settings in DE and the restricted parameter Fcrit was used to enhance the ability of converging to global optimum.An implementation of proposed DE-BPNN was given,the network had one hidden layer with 52 nodes and it was trained on 36 datasets and tested on another 4 synthetic datasets.Two abnormity models were used to verify the feasibility and effectiveness of the proposed method,the results show that the proposed DE-BP algorithm has better performance than BP,conventional DE-BP and other chaotic DE-BP methods in stability and accuracy,and higher imaging quality than least square inversion.
基金Project(Z132012)supported by the Second Five Technology-based in Science and Industry Bureau of ChinaProject(YWF1103Q062)supported by the Fundemental Research Funds for the Central Universities in China
文摘A relevance vector machine (RVM) based fault diagnosis method was presented for non-linear circuits. In order to simplify RVM classifier, parameters selection based on particle swarm optimization (PSO) and preprocessing technique based on the kurtosis and entropy of signals were used. Firstly, sinusoidal inputs with different frequencies were applied to the circuit under test (CUT). Then, the resulting frequency responses were sampled to generate features. The frequency response was sampled to compute its kurtosis and entropy, which can show the information capacity of signal. By analyzing the output signals, the proposed method can detect and identify faulty components in circuits. The results indicate that the fault classes can be classified correctly for at least 99% of the test data in example circuit. And the proposed method can diagnose hard and soft faults.
文摘The paper deals with analysis and synthesis of non-harmonic and non-linear sources and appliances, and their interaction with harmonic power supply network. Basic idea is based on knowledge of harmonic spectrum of the sources and/or appliances, respectively. Obviously, one need to know voltage harmonic components of voltage sources (renewable with inverters,...), and current harmonic components generated by non-linear appliances (rectifiers,...). Method of investigation lies on decomposition of real electric circuit into n-harmonic separated equivalent schemes for each harmonic component. Then transient analysis will be done for each scheme separately using "impedance harmonic matrices". The important fact is that each equivalent scheme is now linearized and therefore easily calculated. Finally, the effects of each investigated schemes arc summed into resulting quantities of real non-linear electric circuit.
文摘The article states about reactive power compensation methods for circuits with non-sinusoidal voltages. An basic introduction to reactive power theory has been given, together with the optimal capacitance selection theory. There have been presented selected theories application in order to compensate the reactive power in one-phase circuits. The measurement results before the compensation have been discussed and measurement results after compensation of an actual object supplied from an non-sinusoidal voltage source were presented. The algorithms of optimal capacity selection were given, which connected in parallel to the circuit with inductive character will cause current root-mean-square value minimization. The measurement results after applying the reactive power minimization algorithm have shown improvement in compensation of strongly nonlinear receivers supplied with distorted signals.
文摘Nonlinear static analysis of piezoelectric plates has been carried out using nonlinear finite element method considering electro-mechanical coupling,The geometrical nonlinearity has been taken into account and electric potential is assumed to be quadratic across the plate thickness,The governing equations are obtained using potential energy and Hamilton's principle that includes elastic and piezoelectric effects.The finite element model is derived based on constitutive equation of piezoelectric material accounting for coupling between elasticity and electric effect using higher order plate elements,Results are presented for piezoelectric plate under different mechanical boundary conditions,Numerical results for the plate are given in dimensionless graphical forms.Effects of boundary conditions on linear and nonlinear response of the plate are also studied.The numerical results obtained by the present model are in good agreement with the available solutions reported in the literature.
文摘This paper proposes a parameter determination method of distribution voltage regulators load ratio control transformers (LRT) and step voltage regulators (SVR) considering the tap change and voltage profile. The method takes two procedures in order to simplify the optimization problem and to reduce calculation time. One is to simultaneously determine the control parameters of LRT and SVR minimizing voltage violations and voltage variations. The algorithm is based on particle swarm optimization (PSO), which is one of non-linear optimization methods by using a concept of swarm intelligence. Another is to determine the dead-band width of LRT and SVR on the basis of bi-evaluation of tap change and voltage margin. The concept of a Pareto optimal solution is used for the decision of the best dead-band width. As the results of numerical simulations using distribution network model, the validity of the proposed method has been affirmed.
文摘The advantages of OPV (organic photovoltaic) are low cost, little pollution and flexible. But challenge for OPV manufacture still is lacking of accurately performance measurement due to capacitance issue. Firstly, characterization of OPV requires considering the slowly temporal response due to capacitance effect, and the relative I-V (current-voltage) curves are strongly dependent on the voltage sweep direction, even for the sweep time only in few seconds or less. Secondly, the IPCE (incident photon-to-electron conversion efficiency) also shows the slowly temporal response due to capacitance effect and is dependent on the wavelength of the incident light. Furthermore, the related features for measuring I-V curves are more sensitive with temperature due to non-linear characteristics issue, but current IPCE spectra of OPV are similar to that happened in conventional crystalline Si or amorphous silicon devices. In this work, we developed a RTOSM (real-time one-sweep method) applied both in I-V and IPCE to analysis different electronic transport materials, and result showed this new approach proposed a good way to slow down testing time and having better accuracy for OPV measurement by eliminating acceptance effect instantly.
基金supported by the National Natural Science Foundation of China (61471126)a grant from Science and Technology Commission of Shanghai Municipality (16JC1400603)
文摘Gallium-tin oxide(GTO) semiconductor thin films were prepared by spin-coating with 2-methoxyethanol as the solvent. Their crystal structures, optical transparency,chemical states and surface morphologies, along with the electrical properties, were dependent on Ga contents and annealing temperatures. The optimized GTO channel layer was applied in the high-k Al2O3 thin film transistor(TFT) with a low operation voltage of 2 V, a maximum field-effect mobility of 69 cm^2 V^-1 s^-1, a subthreshold swing(SS) of 76 mV dec^-1, a threshold voltage of 0.67 V and an on-off current ratio of 1.8×10^7. The solution-processed amorphousGTO-TFTs would promote the development of low-consumption, low-cost and high performance In-free TFT devices.
基金supported by Fundamental Research Funds for the Central Universities and National Natural Science Foundation of China(Grant No.11171028)
文摘We study a class of semilinear SchrSdinger equation with electromagnetic fields and the nonlinearity term involving critical growth. We assume that the potential of the equation includes a parameter A and can be negative in some domain. Moreover, the potential behaves like potential well when the parameter A is large. Using variational methods combining Nehari methods, we prove that the equation has a least energy solution which, as the parameter A becomes large, localized near the bottom of the potential well. Our result is an extension of the corresponding result for the SchrSdinger equation which involves critical growth but does not involve electromagnetic fields.
基金supported by the National Natural Science Foundation of China(Grant Nos. 10702034,10732050,90816006 and 10820101048)the National Basic Research Program of China(Grant Nos.2007CB936803 and 2010CB832701)
文摘To simulate the nonlinear behavior of ferroelectric structures and devices under non-uniform electromechanical loadings,a domain-switching embedded electromechanical finite element method is developed in this paper.Following continuum assumption,the electromechanical behavior of each representative material point can be obtained by averaging the behavior of the local corresponding microstructure,e.g.42 domains used in this work.A new Double Gibbs free energy criterion for domain-switching is proposed to ensure the convergence and stability of the simulations on ferroelectrics under non-uniform field.Several computational examples are given to demonstrate that this nonlinear finite element method can yield reasonable and stable simulation results which can be used to explain some experimental results and assist the design of ferroelectric devices.
文摘With the level of short-circuit current of power systems growing increasingly higher,optimal allocation of current limiters has received considerable attention in recent years,especially in China.This paper analyzes two kinds of common used current limiters based on the increment of bus impedance matrix and proposes a multi-objective current limiters configuration model considering the investment of limiters,the level of short-circuit current,as well as the transient stability of power system.An innovative search space reduction technique based on sensitivity factor is introduced to choose better candidate locations for current limiters so as to avoid the curse of dimensionality.The elitist non-dominated sorting genetic algorithm II is used to search the Pareto-optimal solutions of the proposed model.In order to further improve optimization efficiency,master-slave parallel modification of NSGA-II program structure is implemented.The satisfactory case study results demonstrate the feasibility of the proposed multi-objective method in power system current limiters allocation associated with cost,security and stability.