期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
非血红素铁酶中动态配位变化对C-H键选择性胺化反应的调控机制
1
作者 张璇 刘佳 +2 位作者 廖浪星 王子宽 王斌举 《Chinese Journal of Catalysis》 SCIE CAS CSCD 2024年第7期131-144,共14页
氮杂环丙烷结构广泛存在于天然生物碱中,具有杀菌、抗癌等作用.然而,目前关于生物体系在合成氮杂环丙烷结构过程中如何克服氮杂环丙烷高环张力带来的热力学不利因素,以及如何避免形成热力学更稳定的羟基化副产物的报道较少.TqaL_(NC)酶... 氮杂环丙烷结构广泛存在于天然生物碱中,具有杀菌、抗癌等作用.然而,目前关于生物体系在合成氮杂环丙烷结构过程中如何克服氮杂环丙烷高环张力带来的热力学不利因素,以及如何避免形成热力学更稳定的羟基化副产物的报道较少.TqaL_(NC)酶是目前非血红素酶家族中唯一一种能够依赖α-酮戊二酸活化C-H键,进而生成氮杂环丙烷结构的酶.深入探究TqaL_(NC)酶选择性生成氮杂环丙烷结构并避免羟基化副产物的机制,有助于深入理解非血红素铁酶家族在C-H键活化及官能化过程中的选择性调控机理.本文以TqaL_(NC)酶的晶体结构为基础,采用分子动力学(MD)模拟以及量子力学-分子力学(QM/MM)等多尺度模拟方法对TqaL_(NC)酶与L-缬氨酸(L-Val)、TqaL_(NC)酶与L-异亮氨酸(L-Ile)和F345A-TqaL_(NC)酶与L-异亮氨酸(L-Ile)三个反应过程进行了详细的机理研究.结果表明,TqaL_(NC)酶在反应过程中生成的直立式构象的Fe(Ⅳ)=O物种会通过构象异构化获得赤道面式构象,为底物(L-Val、L-Ile、L-homoalaine)上NH_(3)^(+)与Fe的配位提供结构基础.在水和关键酸性残基的介导下,底物NH_(3)^(+)两次脱去质子与Fe(Ⅳ)=O物种配位,生成HN-Fe(Ⅳ)=O结构.随后,Fe(Ⅳ)=O物种攫取底物H原子,生成HN-Fe(Ⅲ)-OH中间体.此时NH回弹反应比传统的OH回弹反应在动力学上更有优势,因此选择性地生成了氮杂环丙烷产物.在反应过程中,底物侧链与周围氨基酸的位阻效应是影响NH回弹反应能垒的重要因素.通过改变底物侧链大小(L-Val→L-Ile)以及附近氨基酸的突变(F345A)实验,证实了该结论.本文还通过理论计算预测了TqaL_(NC)酶与L-高丙氨酸的反应产物为羟基化产物,并通过新的实验证据进一步支持了理论预测的机理.此外,在HN-Fe(Ⅲ)-OH结构中,通过前线轨道理论分析发现,dπ*Fe-N,dπ*Fe-OH轨道的能量差是影响NH/OH回弹反应能垒的另一重要因素.当底物NH与Fe配位时,其配位作用能够使得dπ*Fe-N以及dπ*Fe-OH轨道有效分裂,这种分裂进而影响了反应路径的选择性,确保氮杂环丙烷产物的生成.综上,本文提出了依赖α-酮戊二酸酶催化合成氮杂环丙烷结构的新机理.研究发现,Fe中心的动态配位效应在实现C-H键选择性胺化反应并避免C-H键羟基化反应中起到了关键作用.该理论为非血红素Fe酶催化的非羟基化反应提供了新的见解,并为探索包括C-N/C-S/C-O等重要生物合成反应新机理的探究提供了新思路. 展开更多
关键词 联合量子力学-分子力学方法 C-H键活化 非血红素酶 胺化反应 羟基化反应
在线阅读 下载PDF
Orchestration of diverse components in soluble methane monooxygenase for methane hydroxylation
2
作者 Yunha Hwang Dong-Heon Lee Seung Jae Lee 《Chinese Journal of Catalysis》 2025年第1期204-212,共9页
Methane(CH_(4))has a higher heat capacity(104.9 kcal/mol)than carbon dioxide(CO_(2)),and this has inspired research aimed at reducing methane levels to retard global warming.Hydroxylation under ambient conditions thro... Methane(CH_(4))has a higher heat capacity(104.9 kcal/mol)than carbon dioxide(CO_(2)),and this has inspired research aimed at reducing methane levels to retard global warming.Hydroxylation under ambient conditions through methanotrophs can provide crucial information for understanding the harsh C-H activation of methane.Soluble methane monooxygenase(sMMO)belongs to the bacterial multi-component monooxygenase superfamily and requires hydroxylase(MMOH),regulatory(MMOB),and reductase(MMOR)components.Recent structural and biophysical studies have demonstrated that these components accelerate and retard methane hydroxylation in MMOH through protein-protein interactions.Complex structures of sMMO,including MMOH-MMOB and MMOH-MMOD,illustrate how these regulatory and inhibitory components orchestrate the di-iron active sites located within the four-helix bundles of MMOH,specifically at the docking surface known as the canyon region.In addition,recent biophysical studies have demonstrated the role of MmoR,aσ54-dependent transcriptional regulator,in regulating sMMO expression.This perspective article introduces remarkable discoveries in recent reports on sMMO components that are crucial for understanding sMMO expression and activities.Our findings provide insight into how sMMO components interact with MMOH to control methane hydroxylation,shedding light on the mechanisms governing sMMO expression and the interactions between activating enzymes and promoters. 展开更多
关键词 Soluble methane monooxygenase Non-hemedi-ironactivesite Methane oxidation C-Hactivation O_(2)activation
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部