高精度的海上船舶轨迹预测是降低船舶碰撞风险、提升船舶搜救效率的重要基础.海上航行环境的多变性使船舶轨迹数据在时间和空间上具有高度复杂性,现有方法对船舶轨迹数据的质量及运动信息关注度不足,难以充分捕捉轨迹中的时空特征和关...高精度的海上船舶轨迹预测是降低船舶碰撞风险、提升船舶搜救效率的重要基础.海上航行环境的多变性使船舶轨迹数据在时间和空间上具有高度复杂性,现有方法对船舶轨迹数据的质量及运动信息关注度不足,难以充分捕捉轨迹中的时空特征和关联信息.因此,文中提出融合数据质量增强和时空信息编码网络的船舶海上轨迹预测方法(Ship Maritime Trajectory Prediction Method Integrating Data Quality Enhancement and Spatio-Temporal Information Encoding Network,DQE-STIEN).首先,基于船舶轨迹数据的特征,设计结合哈希映射分类及局部离群哈希值异常检测的数据质量增强算法,对问题数据进行质量增强.然后,针对多属性的船舶轨迹数据,设计具有双编码通道的时空信息编码网络,充分提取并整合船舶轨迹数据中的位置信息与运动特征.最后,基于时空信息编码提取数据中的时空关联信息,并经解码生成完整的轨迹预测结果.在5个不同区域的AIS数据集上的实验表明DQE-STIEN性能较优.同时,DQE-STIEN具有一定的泛化性,也能有效分析能源、销售、环境和金融等领域的时序数据.展开更多
石质文物假山长期曝露于室外,受多源因素影响易形成不均匀沉降,因此假山沉降传感器监测与长时精准预测对石质文物保护十分必要。现有沉降长时预测方法难以有效解决噪声和瞬时波动造成的精度降低与应用可靠性问题。为此,本文提出一种融...石质文物假山长期曝露于室外,受多源因素影响易形成不均匀沉降,因此假山沉降传感器监测与长时精准预测对石质文物保护十分必要。现有沉降长时预测方法难以有效解决噪声和瞬时波动造成的精度降低与应用可靠性问题。为此,本文提出一种融合多源因素的编码器-解码器沉降长时预测模型。在多源因素编码器中设计动态多源因素融合模块将深度特征进行融合并实时计算沉降、温度、振动、裂缝等多源因素与目标数据的动态相关性;在时域增强解码器中构建多头自适应平滑模块,通过多头注意力的方法自适应学习各时间步的平滑指数,保留时间序列长期趋势,减少传感器带来的噪声和瞬时波动。本模型以环秀山庄沉降监测系统的实测数据集进行验证,结果表明该模型相较于基线方法在评价指标均方根误差(Root Mean Squared Error,RMSE)指标、平均绝对误差(Mean Absolute Error,MAE)指标以及连续排序概率评分(Continuous Ranked Probability Score,CRPS)最高分别提升了19.1%、19%以及16.3%,且符合实际应用需求。展开更多
为了解决飞机目标机动数据集缺失的问题,文章利用运动学建模生成了丰富的轨迹数据集,为网络训练提供了必要的数据支持。针对现阶段轨迹预测运动学模型建立困难及时序预测方法难以提取时空特征的问题,提出了一种结合Transformer编码器和...为了解决飞机目标机动数据集缺失的问题,文章利用运动学建模生成了丰富的轨迹数据集,为网络训练提供了必要的数据支持。针对现阶段轨迹预测运动学模型建立困难及时序预测方法难以提取时空特征的问题,提出了一种结合Transformer编码器和长短期记忆网络(Long Short Term Memory,LSTM)的飞机目标轨迹预测方法,即Transformer-Encoder-LSTM模型。新模型可同时提供LSTM和Transformer编码器模块的补充历史信息和基于注意力的信息表示,提高了模型能力。通过与一些经典神经网络模型进行对比分析,发现在数据集上,新方法的平均位移误差减小到0.22,显著优于CNN-LSTMAttention模型的0.35。相比其他网络,该算法能够提取复杂轨迹中的隐藏特征,在面对飞机连续转弯、大机动转弯的复杂轨迹时,能够保证模型的鲁棒性,提升了对于复杂轨迹预测的准确性。展开更多
文摘高精度的海上船舶轨迹预测是降低船舶碰撞风险、提升船舶搜救效率的重要基础.海上航行环境的多变性使船舶轨迹数据在时间和空间上具有高度复杂性,现有方法对船舶轨迹数据的质量及运动信息关注度不足,难以充分捕捉轨迹中的时空特征和关联信息.因此,文中提出融合数据质量增强和时空信息编码网络的船舶海上轨迹预测方法(Ship Maritime Trajectory Prediction Method Integrating Data Quality Enhancement and Spatio-Temporal Information Encoding Network,DQE-STIEN).首先,基于船舶轨迹数据的特征,设计结合哈希映射分类及局部离群哈希值异常检测的数据质量增强算法,对问题数据进行质量增强.然后,针对多属性的船舶轨迹数据,设计具有双编码通道的时空信息编码网络,充分提取并整合船舶轨迹数据中的位置信息与运动特征.最后,基于时空信息编码提取数据中的时空关联信息,并经解码生成完整的轨迹预测结果.在5个不同区域的AIS数据集上的实验表明DQE-STIEN性能较优.同时,DQE-STIEN具有一定的泛化性,也能有效分析能源、销售、环境和金融等领域的时序数据.
文摘石质文物假山长期曝露于室外,受多源因素影响易形成不均匀沉降,因此假山沉降传感器监测与长时精准预测对石质文物保护十分必要。现有沉降长时预测方法难以有效解决噪声和瞬时波动造成的精度降低与应用可靠性问题。为此,本文提出一种融合多源因素的编码器-解码器沉降长时预测模型。在多源因素编码器中设计动态多源因素融合模块将深度特征进行融合并实时计算沉降、温度、振动、裂缝等多源因素与目标数据的动态相关性;在时域增强解码器中构建多头自适应平滑模块,通过多头注意力的方法自适应学习各时间步的平滑指数,保留时间序列长期趋势,减少传感器带来的噪声和瞬时波动。本模型以环秀山庄沉降监测系统的实测数据集进行验证,结果表明该模型相较于基线方法在评价指标均方根误差(Root Mean Squared Error,RMSE)指标、平均绝对误差(Mean Absolute Error,MAE)指标以及连续排序概率评分(Continuous Ranked Probability Score,CRPS)最高分别提升了19.1%、19%以及16.3%,且符合实际应用需求。
文摘为了解决飞机目标机动数据集缺失的问题,文章利用运动学建模生成了丰富的轨迹数据集,为网络训练提供了必要的数据支持。针对现阶段轨迹预测运动学模型建立困难及时序预测方法难以提取时空特征的问题,提出了一种结合Transformer编码器和长短期记忆网络(Long Short Term Memory,LSTM)的飞机目标轨迹预测方法,即Transformer-Encoder-LSTM模型。新模型可同时提供LSTM和Transformer编码器模块的补充历史信息和基于注意力的信息表示,提高了模型能力。通过与一些经典神经网络模型进行对比分析,发现在数据集上,新方法的平均位移误差减小到0.22,显著优于CNN-LSTMAttention模型的0.35。相比其他网络,该算法能够提取复杂轨迹中的隐藏特征,在面对飞机连续转弯、大机动转弯的复杂轨迹时,能够保证模型的鲁棒性,提升了对于复杂轨迹预测的准确性。