针对脉冲多普勒雷达在中脉冲重复频率下同时存在距离模糊和多普勒模糊问题,提出了一种基于正交离散频率编码(discrete frequency coding,DFC)波形解二维模糊的方法。基于雷达循环发射的一组正交DFC信号,在回波脉冲压缩过程中,利用信号...针对脉冲多普勒雷达在中脉冲重复频率下同时存在距离模糊和多普勒模糊问题,提出了一种基于正交离散频率编码(discrete frequency coding,DFC)波形解二维模糊的方法。基于雷达循环发射的一组正交DFC信号,在回波脉冲压缩过程中,利用信号正交性进行距离模糊区域的分离,完成距离解模糊。通过多普勒模糊数遍历补偿以及与keystone后相参积累结果对比,确定正确的多普勒模糊数,完成多普勒解模糊。经过Keystone处理后,可以进行整个驻留时间的相参积累,提高回波在低信噪比情况下的目标检测及参数估计能力。同时考虑了DFC信号的多普勒敏感性问题,在精确匹配滤波过程中补偿了脉内多普勒的影响。仿真实验验证了所提方法解二维模糊的有效性以及低信噪比检测能力。展开更多
The dilemma of the quantization parameter (QP) being involved in both rate control and rate-distortion optimization (RDO) prevents using the traditional rate control scheme. Although some rate control schemes are prop...The dilemma of the quantization parameter (QP) being involved in both rate control and rate-distortion optimization (RDO) prevents using the traditional rate control scheme. Although some rate control schemes are proposed to circumvent the dilemma, the inaccurate prediction model and improper bit allocation deter H.264 application on low bandwidth channel. To resolve this issue, this paper proposes a novel rate control scheme by considering the macroblock (MB) encoding complexity variation and buffer variation and by exploiting the spatio-temporal correlation sufficiently well. Simulations showed that this scheme improves the perceptual quality of the pictures with similar or smaller PSNR deviations when compared to that of rate control in JVT-O016.展开更多
This work is concerned with the development and optimization of a signal model for scalable perceptual audio coding at low bit rates. A complementary two-part signal model consisting of Sines plus Noise (SN) is descri...This work is concerned with the development and optimization of a signal model for scalable perceptual audio coding at low bit rates. A complementary two-part signal model consisting of Sines plus Noise (SN) is described. The paper presents essentially a fundamental enhancement to the sinusoidal modeling component. The enhancement involves an audio signal scheme based on carrying out overlap-add sinusoidal modeling at three successive time scales, large, medium, and small. The sinusoidal modeling is done in an analysis-by-synthesis overlap- add manner across the three scales by using a psychoacoustically weighted matching pursuits. The sinusoidal modeling residual at the first scale is passed to the smaller scales to allow for the modeling of various signal features at appropriate resolutions.This approach greatly helps to correct the pre-echo inherent in the sinusoidal model. This improves the perceptual audio quality upon our previous work of sinusoidal modeling while using tile same number of sinusoids. Tile most obvious application for the SN model is in scalable, high fidelity audio coding and signal modification.展开更多
文摘针对脉冲多普勒雷达在中脉冲重复频率下同时存在距离模糊和多普勒模糊问题,提出了一种基于正交离散频率编码(discrete frequency coding,DFC)波形解二维模糊的方法。基于雷达循环发射的一组正交DFC信号,在回波脉冲压缩过程中,利用信号正交性进行距离模糊区域的分离,完成距离解模糊。通过多普勒模糊数遍历补偿以及与keystone后相参积累结果对比,确定正确的多普勒模糊数,完成多普勒解模糊。经过Keystone处理后,可以进行整个驻留时间的相参积累,提高回波在低信噪比情况下的目标检测及参数估计能力。同时考虑了DFC信号的多普勒敏感性问题,在精确匹配滤波过程中补偿了脉内多普勒的影响。仿真实验验证了所提方法解二维模糊的有效性以及低信噪比检测能力。
文摘The dilemma of the quantization parameter (QP) being involved in both rate control and rate-distortion optimization (RDO) prevents using the traditional rate control scheme. Although some rate control schemes are proposed to circumvent the dilemma, the inaccurate prediction model and improper bit allocation deter H.264 application on low bandwidth channel. To resolve this issue, this paper proposes a novel rate control scheme by considering the macroblock (MB) encoding complexity variation and buffer variation and by exploiting the spatio-temporal correlation sufficiently well. Simulations showed that this scheme improves the perceptual quality of the pictures with similar or smaller PSNR deviations when compared to that of rate control in JVT-O016.
基金Supported by the National Natural Science Foundation of China(No.69802007)Motorola China Research Center(No.B38300)Natural Science Foundation of Guangdong(No.011611)
文摘This work is concerned with the development and optimization of a signal model for scalable perceptual audio coding at low bit rates. A complementary two-part signal model consisting of Sines plus Noise (SN) is described. The paper presents essentially a fundamental enhancement to the sinusoidal modeling component. The enhancement involves an audio signal scheme based on carrying out overlap-add sinusoidal modeling at three successive time scales, large, medium, and small. The sinusoidal modeling is done in an analysis-by-synthesis overlap- add manner across the three scales by using a psychoacoustically weighted matching pursuits. The sinusoidal modeling residual at the first scale is passed to the smaller scales to allow for the modeling of various signal features at appropriate resolutions.This approach greatly helps to correct the pre-echo inherent in the sinusoidal model. This improves the perceptual audio quality upon our previous work of sinusoidal modeling while using tile same number of sinusoids. Tile most obvious application for the SN model is in scalable, high fidelity audio coding and signal modification.