To improve the rotor off-axis response prediction, aerodynamic models must include the wake distortion effects of the maneuvering rotor. And the crux of the matter is to obtain a precise wake curvature parameter KR. A...To improve the rotor off-axis response prediction, aerodynamic models must include the wake distortion effects of the maneuvering rotor. And the crux of the matter is to obtain a precise wake curvature parameter KR. A Peters-He finite-state wake model is improved to incorporate the operating-state-dependent KR to embody maneuver-induced effects. The curvature parameter KR varies with rotor forward speed, thrust and maneuvering angular rate according to a smoking experiment. Moreover, aerodynamic force/moment experiment indicates that after a quasi-step angular input, both on-axis and off-axis rotor responses show that an overshoot and its amplitude increases with the pitching rate. The comparison between theoretical and experimental results shows that the operating-state-accurate curvature parameter must be adopted to obtain accurate aerodynamic forces/moments, especially for the off-axis response. Additionally, combined with a dynamic wake distortion model, the obtained correlation agrees well with experimental data.展开更多
To have a deep understanding of the lateral stability of hypersonic lifting-configurations, wind-tunnel tests of roll static and dynamic stability for typical hypersonic lifting-configurations are carried out. The res...To have a deep understanding of the lateral stability of hypersonic lifting-configurations, wind-tunnel tests of roll static and dynamic stability for typical hypersonic lifting-configurations are carried out. The results show the roll is static unstable in small angles; the roll dynamic test curves present obvious non-linearity characteristics, and the model vibrates violently even When the angle of attack is small, which may be provoked by the non-symmetry transition from the small transverse flow around the nose of model. Subsequent research adopts longitudinal trips to generate symmetry transition at the fore-body of the model. As a result, the lateral stability of the aircrafts is apparently improved. The results show that the lateral stability of hypersonic aircrafts is very weak, and the main reason for this is lateral perturbation of flow over the nose, among which asymmetric transition weighs the most. Adoption of longitudinal trips could spur fixed transition of lateral flow, reduce the transition asymmetry of lateral flow, and strengthen the lateral stability of hypersonic aircrafts at the same time.展开更多
文摘To improve the rotor off-axis response prediction, aerodynamic models must include the wake distortion effects of the maneuvering rotor. And the crux of the matter is to obtain a precise wake curvature parameter KR. A Peters-He finite-state wake model is improved to incorporate the operating-state-dependent KR to embody maneuver-induced effects. The curvature parameter KR varies with rotor forward speed, thrust and maneuvering angular rate according to a smoking experiment. Moreover, aerodynamic force/moment experiment indicates that after a quasi-step angular input, both on-axis and off-axis rotor responses show that an overshoot and its amplitude increases with the pitching rate. The comparison between theoretical and experimental results shows that the operating-state-accurate curvature parameter must be adopted to obtain accurate aerodynamic forces/moments, especially for the off-axis response. Additionally, combined with a dynamic wake distortion model, the obtained correlation agrees well with experimental data.
文摘To have a deep understanding of the lateral stability of hypersonic lifting-configurations, wind-tunnel tests of roll static and dynamic stability for typical hypersonic lifting-configurations are carried out. The results show the roll is static unstable in small angles; the roll dynamic test curves present obvious non-linearity characteristics, and the model vibrates violently even When the angle of attack is small, which may be provoked by the non-symmetry transition from the small transverse flow around the nose of model. Subsequent research adopts longitudinal trips to generate symmetry transition at the fore-body of the model. As a result, the lateral stability of the aircrafts is apparently improved. The results show that the lateral stability of hypersonic aircrafts is very weak, and the main reason for this is lateral perturbation of flow over the nose, among which asymmetric transition weighs the most. Adoption of longitudinal trips could spur fixed transition of lateral flow, reduce the transition asymmetry of lateral flow, and strengthen the lateral stability of hypersonic aircrafts at the same time.