期刊文献+
共找到1,153篇文章
< 1 2 58 >
每页显示 20 50 100
MDA-MIM:一种融合多尺度特征与双重注意力机制的雷达回波图预测模型
1
作者 胡强 高雅婷 +1 位作者 尹宾礼 渠连恩 《通信学报》 北大核心 2025年第3期248-257,共10页
为提升雷达回波图中时空特征的提取质量,提出了一种基于多尺度特征融合和双重注意力机制的MIM改进(MDA-MIM)模型。该模型基于空洞卷积实现多尺度特征提取与融合。通过在MIM模型中的非平稳模块集成自注意力机制,调整不同时间步长和空间... 为提升雷达回波图中时空特征的提取质量,提出了一种基于多尺度特征融合和双重注意力机制的MIM改进(MDA-MIM)模型。该模型基于空洞卷积实现多尺度特征提取与融合。通过在MIM模型中的非平稳模块集成自注意力机制,调整不同时间步长和空间位置的权重,更精确地捕捉雷达回波数据中的非平稳性特征。在平稳模块引入局部注意力机制,以聚焦于局部区域内的特征关联,增强对平稳性特征的捕捉能力。真实数据集上的实验结果表明,MDA-MIM具有优秀的预测性能,在MSE、MAE、SSIM和PSNR等指标上均优于对比模型。 展开更多
关键词 雷达回波图 时空预测 注意力机制 多尺度特征
在线阅读 下载PDF
基于注意力机制和多尺度融合的人群计数网络
2
作者 栾方军 龚琪 袁帅 《计算机工程》 北大核心 2025年第3期352-361,共10页
为了应对人群图像中尺度变化和背景干扰的问题,提出一种人群计数网络模型,旨在充分利用多尺度信息并降低背景噪声的影响。首先采用ConvNeXt作为主干网络,用于提取特征。其次为了有效融合不同层次的特征,提出多层次特征融合模块(MFFM),... 为了应对人群图像中尺度变化和背景干扰的问题,提出一种人群计数网络模型,旨在充分利用多尺度信息并降低背景噪声的影响。首先采用ConvNeXt作为主干网络,用于提取特征。其次为了有效融合不同层次的特征,提出多层次特征融合模块(MFFM),将主干网络中不同层次的特征进行跨尺度融合,融合后的特征包含了不同尺度的语义信息,可以更好地适应人群计数任务中的尺度变化问题。接着为了更好地解决人群计数中存在的挑战,设计一个多尺度注意力模块(MSAM),根据不同感受野的分支提取不同尺度的特征,利用选择性Kernel通道注意力(SKCA)缓解多列结构存在的特征相似问题,并将模块生成的注意力图反馈到对应的尺度特征中,以抑制背景的干扰。网络模型在ShanghaiTechA数据集中的平均绝对误差(MAE)和均方根误差(RMSE)分别达到了56.1和93.9;在ShanghaiTechB数据集中的MAE和RMSE分别达到了6.1和10.3;在UCF_CC_50数据集中的MAE和RMSE分别达到了174.9和252.7;在Mall数据集中的MAE和RMSE分别达到了1.42和1.85。在公开数据集上的实验结果表明,提出的网络模型与现有代表性的人群计数方法相比,在提升人群计数任务的准确性和鲁棒性方面均取得了明显进展。 展开更多
关键词 人群计数 多尺度特征融合 注意力机制 神经网络 密度图
在线阅读 下载PDF
基于双重注意力机制的多尺度指代目标分割方法
3
作者 胡梦楠 王蓉 +1 位作者 张文靖 张琪 《计算机辅助设计与图形学学报》 北大核心 2025年第1期148-156,共9页
针对指代分割任务中视觉和语言间缺乏充分的跨模态交互、不同尺寸的目标空间和语义信息存在差异的问题,提出了基于双重注意力机制的多尺度指代目标分割方法.首先,利用语言表达中不同类型的信息关键词来增强视觉和语言特征的跨模态对齐,... 针对指代分割任务中视觉和语言间缺乏充分的跨模态交互、不同尺寸的目标空间和语义信息存在差异的问题,提出了基于双重注意力机制的多尺度指代目标分割方法.首先,利用语言表达中不同类型的信息关键词来增强视觉和语言特征的跨模态对齐,并使用双重注意力机制捕捉多模态特征间的依赖性,实现模态间和模态内的交互;其次,利用语言特征作为引导,从其他层次的特征中聚合与目标相关的视觉信息,进一步增强特征表示;然后利用双向ConvLSTM以自下而上和自上而下的方式逐步整合低层次的空间细节和高层次的语义信息;最后,利用不同膨胀因子的空洞卷积融合多尺度信息,增加模型对不同尺度分割目标的感知能力.此外,在UNC,UNC+,GRef和ReferIt基准数据集上进行实验,实验结果表明,文中方法在UNC,UNC+,GRef和ReferIt上的oIoU指标分别提高了1.81个百分点、1.26个百分点、0.84个百分点和0.32个百分点,广泛的消融研究也验证了所提方法中各组成部分的有效性. 展开更多
关键词 指代目标分割 跨模态交互 特征增强 注意力机制 多尺度融合
在线阅读 下载PDF
基于多尺度特征融合和注意力机制的视频异常检测方法
4
作者 吴祥 肖剑 吉根林 《应用科学学报》 北大核心 2025年第2期234-244,共11页
视频画面中的运动物体在不同时刻往往呈现出多样的尺度大小,这给视频异常检测带来了一定的挑战。尽管传统的生成对抗网络在视频异常检测任务上取得了一定成效,但因其采用单一尺度的特征提取方法,无法充分捕获不同尺度物体的特征,从而限... 视频画面中的运动物体在不同时刻往往呈现出多样的尺度大小,这给视频异常检测带来了一定的挑战。尽管传统的生成对抗网络在视频异常检测任务上取得了一定成效,但因其采用单一尺度的特征提取方法,无法充分捕获不同尺度物体的特征,从而限制了其异常检测的性能。针对该问题,本文基于生成对抗网络结构,提出了一种基于多尺度特征融合和注意力机制的视频异常检测方法。使用大小不同的卷积核捕获不同感受野的特征,并将它们进行融合以获得多尺度的特征表示。此外,在生成器的转置卷积层后引入坐标注意力机制,自适应分配特征图权重,从而增强模型对关键特征的感知能力。在公开数据集UCSD Ped2和Avenue上的实验结果表明,本文方法的性能优于其他同类方法。 展开更多
关键词 视频异常检测 深度学习 生成对抗网络 多尺度特征融合 注意力机制
在线阅读 下载PDF
面向分割的局部分块与全局多尺度注意力机制
5
作者 谭荆彬 赵旭俊 苏慧娟 《计算机工程与设计》 北大核心 2025年第4期1141-1148,共8页
现有的注意力机制仅增强特征图的通道或空间维度,未能充分捕捉细微视觉元素和多尺度特征变化。为解决此问题,提出一种基于局部分块与全局多尺度特征融合的注意力机制(patch and global multiscale attention,PGMA)。将特征图分割成多个... 现有的注意力机制仅增强特征图的通道或空间维度,未能充分捕捉细微视觉元素和多尺度特征变化。为解决此问题,提出一种基于局部分块与全局多尺度特征融合的注意力机制(patch and global multiscale attention,PGMA)。将特征图分割成多个小块,分别计算这些小块的注意力得分,增强对局部信息的感知能力。使用一组空洞卷积计算整个特征图的得分,获得全局多尺度信息的权衡。实验中,将PGMA集成到U-Net、DeepLab、SegNet等语义分割网络中,有效提升了它们的分割性能。这表明PGMA在增强CNN性能方面优于当前主流方法。 展开更多
关键词 卷积神经网络 注意力机制 局部信息 分块策略 细节感知 全局多尺度信息 语义分割
在线阅读 下载PDF
基于多尺度注意力机制的无人机小目标检测算法
6
作者 冯迎宾 郭枭尊 晏佳华 《兵工学报》 北大核心 2025年第1期12-21,共10页
针对无人机航拍图像密集度大、目标尺寸小、背景复杂等难点,提出一种基于多尺度注意力机制的小目标检测(Small target detection of BPAN-EF_C2f YOLOv8s,SBE_YOLOv8s)算法,通过设计一种基于多尺度注意力机制的特征提取模块(EMA-Faster ... 针对无人机航拍图像密集度大、目标尺寸小、背景复杂等难点,提出一种基于多尺度注意力机制的小目标检测(Small target detection of BPAN-EF_C2f YOLOv8s,SBE_YOLOv8s)算法,通过设计一种基于多尺度注意力机制的特征提取模块(EMA-Faster Block_C2f,EF_C2f),替换YOLOv8网络中的C2f模块,提高网络对小目标特征的提取能力;在特征融合网络中增加P1检测层,并设计一种跨尺度特征融合结构(Bi-Path Aggregation Network,BPAN),融合小目标特征信息;增加一个微小目标检测头,使用SIoU Loss作为边界框损失函数,提升小目标检测精度和网络收敛速度。在公开数据集VisDrone2019上进行实验验证。验证结果表明:与YOLOv8s算法相比,新算法在检测精度上提升了6.9%、mAP50提升了9.1%,模型参数量减少了44.6%,检测速度为28帧/s,新算法在小目标检测领域具有一定的实用性。 展开更多
关键词 多尺度注意力机制 YOLOv8s算法 特征提取 尺度特征融合 小目标检测
在线阅读 下载PDF
基于多尺度CNN与双阶段注意力机制的轴承工况域泛化故障诊断
7
作者 乔卉卉 赵二贤 +3 位作者 郝如江 刘婕 刘帅 王勇超 《振动与冲击》 北大核心 2025年第2期267-278,共12页
变工况条件下,基于深度学习的列车轮对轴承故障诊断模型的训练集与测试集通常来自不同的工况,不同工况振动信号数据分布差异引起的领域漂移问题导致模型准确率降低。基于域适应的变工况轴承故障诊断方法需要获取目标工况域的样本数据参... 变工况条件下,基于深度学习的列车轮对轴承故障诊断模型的训练集与测试集通常来自不同的工况,不同工况振动信号数据分布差异引起的领域漂移问题导致模型准确率降低。基于域适应的变工况轴承故障诊断方法需要获取目标工况域的样本数据参与训练,这在工程实际中难以实现,因此无法实现未知工况的轴承故障诊断。针对以上问题,提出了一种基于多尺度卷积神经网络与双阶段注意力机制网络(two-stage attention multiscale convolutional network model, TSAMCNN)模型的轴承工况域泛化故障诊断方法,其中多尺度特征提取模块从多个尺度上提取时域振动信号中更丰富的故障信息;然后,双阶段注意力模块从通道和空间两个维度自适应地增强故障敏感特征并抑制工况敏感特征和无用特征;最终,提取工况域不变故障特征,从而实现工况域泛化轴承故障诊断。通过变转速和变负载列车轮对轴承故障诊断试验,证明了TSAMCNN模型可提高变工况条件下轴承故障诊断的准确率、抗噪性能和工况域泛化能力。此外,对双阶段注意力机制的权重向量和模型各模块提取的特征进行可视化分析,提高了模型可解释性。 展开更多
关键词 列车轮对轴承 工况域泛化故障诊断 卷积神经网络(CNN) 多尺度特征提取 注意力机制
在线阅读 下载PDF
基于超声造影和跨尺度注意力机制的甲状腺结节影像诊断模型研究
8
作者 龚骁晨 王子昊 《医疗卫生装备》 2025年第4期9-14,共6页
目的:为提高甲状腺结节诊断的准确性,提出一种基于超声造影和跨尺度注意力机制的甲状腺结节影像诊断模型。方法:首先,通过超声造影获取甲状腺结节的相关超声数据,并对数据进行预处理;其次,选择ResNet-101作为骨干网络进行图像的特征提取... 目的:为提高甲状腺结节诊断的准确性,提出一种基于超声造影和跨尺度注意力机制的甲状腺结节影像诊断模型。方法:首先,通过超声造影获取甲状腺结节的相关超声数据,并对数据进行预处理;其次,选择ResNet-101作为骨干网络进行图像的特征提取,并引入跨尺度通道注意力交互(attention interaction across scale channels,AIAC)和跨尺度空间注意力交互(spatial attention interaction across scales,SAIAC)模块进行特征增强;最后,将最终生成的高维特征向量发送到K最邻近(K nearest neighbor,KNN)分类器进行分类。为了验证提出的模型的性能,使用扩散加权成像、扩散张量成像以及超声造影图像作为数据集进行消融实验和对比实验。结果:消融实验结果表明,提出的模型平均精度(average precision,AP)、AP_(50)(交并比为0.5时的AP)、AP_(75)(交并比为0.75时的AP)分别为0.490、0.938、0.485,均优于基线模型。对比实验结果表明,提出的模型预测精度为0.944、召回率为0.939、F_(1)分数为0.924,均优于双向特征金字塔网络(bi-directional feature pyramid network,Bi-FPN)模型和特征金字塔网络(feature pyramid network,FPN)模型。结论:提出的模型在捕捉特征和增强图像信息能力方面具有显著优势,能够提高甲状腺结节诊断的准确性和鲁棒性。 展开更多
关键词 超声造影 通道注意力 空间注意力 尺度注意力机制 甲状腺结节 影像诊断
在线阅读 下载PDF
基于多尺度注意力机制的红外与可见光图像融合研究
9
作者 杨涛 刘福华 《无线互联科技》 2025年第5期46-52,共7页
红外与可见光图像的融合旨在提取和整合源图像中的信息,以生成包含重要且互补信息的结果。然而,目前的融合规则在有效提取最有价值的信息方面存在不足,无法很好地保留关键信息。文章在DenseFuse网络中引入了多头注意力模块(Multi-scale ... 红外与可见光图像的融合旨在提取和整合源图像中的信息,以生成包含重要且互补信息的结果。然而,目前的融合规则在有效提取最有价值的信息方面存在不足,无法很好地保留关键信息。文章在DenseFuse网络中引入了多头注意力模块(Multi-scale Attention Block,MAB)。该模块通过多尺度大核注意力机制,更有效地捕捉全局与局部信息。这使得融合后的图像具有更加丰富的语义信息,从而提升其在后续高层次视觉任务中的表现。 展开更多
关键词 图像融合 多尺度注意力机制 多头注意力模块
在线阅读 下载PDF
优化YOLOv11模型:基于多尺度注意力机制的小目标检测性能提升研究
10
作者 谢立东 刘静超 文雪风 《人工智能与机器人研究》 2025年第1期229-236,共8页
随着遥感图像中小目标检测问题的日益突出,传统目标检测方法在小目标的精确定位上存在局限性。为解决这一问题,本文提出了一种基于YOLOv11模型的多尺度注意力机制优化方法。首先,删除了YOLOv11模型中用于大目标检测的20 × 20尺度... 随着遥感图像中小目标检测问题的日益突出,传统目标检测方法在小目标的精确定位上存在局限性。为解决这一问题,本文提出了一种基于YOLOv11模型的多尺度注意力机制优化方法。首先,删除了YOLOv11模型中用于大目标检测的20 × 20尺度检测层,增加了160 × 160尺度的小目标检测层,以提升小目标的检测精度。其次,采用EIoU (Enhanced Intersection over Union)损失函数替代CIoU损失函数,解决了CIoU在长宽比差异较大的目标中的定位问题,从而加速收敛并提高定位精度。最后,结合空间注意力和通道注意力机制,增强了模型对不同尺度目标的感知能力。实验结果表明,优化后的YOLOv11模型在多个遥感图像数据集上表现出较传统YOLOv11显著提高的精度、召回率和F1分数,特别在小目标检测任务中具有更强的鲁棒性和更高的检测精度。研究表明,提出的方法能有效提升小目标检测性能,为遥感图像分析提供了新的解决方案。With the increasingly prominent problem of small target detection in remote sensing images, traditional object detection methods have limitations in accurately locating small targets. To address this issue, this paper proposes a multi-scale attention mechanism optimization method based on the YOLOv11 model. Firstly, the 20 × 20 scale detection layer used for large object detection in the YOLOv11 model was removed, and a 160 × 160 scale small object detection layer was added to improve the detection accuracy of small objects. Secondly, the EIoU (Enhanced Intersection over Union) loss function is used instead of the CIoU loss function to solve the localization problem of CIoU in targets with large aspect ratio differences, thereby accelerating convergence and improving localization accuracy. Finally, by combining spatial attention and channel attention mechanisms, the model’s perception ability for targets of different scales was enhanced. The experimental results show that the optimized YOLOv11 model exhibits significantly improved accuracy, recall, and F1 score compared to traditional YOLOv11 on multiple remote sensing image datasets, especially in small object detection tasks with stronger robustness and higher detection accuracy. Research has shown that the proposed method can effectively improve the performance of small object detection, providing a new solution for remote sensing image analysis. 展开更多
关键词 YOLOv11 多尺度注意力机制 小目标检测
在线阅读 下载PDF
基于多尺度伸缩卷积与注意力机制的光伏组件缺陷分割算法
11
作者 党宁 李世峰 于坤義 《电子技术应用》 2025年第4期66-71,共6页
无人机在光伏系统的巡检过程中需要对光伏组件的缺陷进行准确和快速识别,为此提出了一种基于多尺度伸缩卷积与注意力机制的光伏组件缺陷分割网络。首先在传统的U-Net网络每个Stage加入多尺度伸缩卷积模块,从而对光伏组件缺陷进行分割,P... 无人机在光伏系统的巡检过程中需要对光伏组件的缺陷进行准确和快速识别,为此提出了一种基于多尺度伸缩卷积与注意力机制的光伏组件缺陷分割网络。首先在传统的U-Net网络每个Stage加入多尺度伸缩卷积模块,从而对光伏组件缺陷进行分割,PA达到了98.61%,与传统U-Net、FCN网络进行对比分析,准确率分别提高了0.32%和1.17%,算法消耗时间0.054 s,相较于对比的分割算法提高了0.006 s~0.013 s;然后将分割后的缺陷掩码mask和原图进行与操作,最后通过轻量级网络MobileNetV3对光伏组件缺陷(热斑、裂缝、鸟粪)进行检测并分类,精确率达到了98.82%,与SqueezeNet、ShuffleNet V2和GhostNet网络进行对比,分别提高了0.43%、1.08%和0.8%,平均检测时间0.026s,相较于对比的检测算法提高了0.002s~0.036s。实验结果表明基于多尺度伸缩卷积与注意力机制的光伏组件缺陷分割网络具有较高的准确率和识别速率。 展开更多
关键词 光伏组件缺陷 注意力机制 多尺度伸缩卷积 U-net网络 MobileNetV3网络
在线阅读 下载PDF
多尺度注意力网络的水下图像增强算法
12
作者 陈海秀 陆康 +2 位作者 何珊珊 刘磊 颜秋叙 《机械科学与技术》 北大核心 2025年第3期505-512,共8页
针对水下环境中的图像存在严重的偏色、模糊等问题,该文提出了一种新型的生成对抗网络。采用U-Net作为生成网络的基础模型并对其进行了改进,首先将注意力机制引入到网络中,并设计多尺度特征提取模块,来提取不同层次的特征。其次通过预... 针对水下环境中的图像存在严重的偏色、模糊等问题,该文提出了一种新型的生成对抗网络。采用U-Net作为生成网络的基础模型并对其进行了改进,首先将注意力机制引入到网络中,并设计多尺度特征提取模块,来提取不同层次的特征。其次通过预处理操作输入白平衡图像提升模型的鲁棒性。为解决单一损失造成图像细节恢复不均匀的问题,在传统的对抗损失函数中联合L1损失与内容损失。实验结果表明:此方法在水下图像的颜色恢复和提高清晰度方面具有很好的效果,其中结构相似度、峰值信噪比、水下彩色质量评估和水下图像质量度量的平均值分别为0.8906、29.0761、0.4454和3.1810。在主观评价和客观评价指标上,综合来说该文算法实验结果均优于对比算法。 展开更多
关键词 水下图像增强 生成对抗网络 注意力机制 多尺度
在线阅读 下载PDF
轻量化的多尺度注意力脊柱侧弯筛查方法
13
作者 郝子强 唐颖 +2 位作者 田芳 张岩 詹伟达 《计算机工程与应用》 北大核心 2025年第3期286-294,共9页
近年来,深度学习越来越多地应用于脊柱侧弯筛查技术研究,并且取得了突出的成效。为了解决脊柱侧弯筛查的精度和效率不高,无法满足大规模脊柱侧弯筛查需要的问题,设计了一种轻量化的多尺度注意力卷积神经网络,对ResNet50进行改进,取得了... 近年来,深度学习越来越多地应用于脊柱侧弯筛查技术研究,并且取得了突出的成效。为了解决脊柱侧弯筛查的精度和效率不高,无法满足大规模脊柱侧弯筛查需要的问题,设计了一种轻量化的多尺度注意力卷积神经网络,对ResNet50进行改进,取得了较好的筛查效果。提出了一种多尺度残差特征提取模块,使用不同大小的卷积核,提取不同尺度的信息;使用三个残差块并在残差块中使用一种混合注意力机制,关注通道和空间两方面的信息,增强特征提取能力;将普通卷积替换成一种深度混洗卷积,在精度损失不多的情况下,提高网络效率;提出了一种多层次特征融合模块,将多个层次信息进行特征融合,提取更加多样化的特征信息。实验证明,相比ResNet50总体准确率提高了11.19个百分点,测试时长减少了2 s。 展开更多
关键词 脊柱侧弯 深度学习 多尺度特征 注意力机制
在线阅读 下载PDF
融合多尺度特征与注意力的小样本目标检测
14
作者 张英俊 甘望阳 +1 位作者 谢斌红 张睿 《小型微型计算机系统》 北大核心 2025年第3期689-696,共8页
针对现有小样本目标检测模型存在的尺度变化问题,支持集与查询集之间的外观变化、遮挡导致的误检与漏检问题,本文提出一种融合多尺度特征与注意力的小样本目标检测模型.首先,采用ResNet-101网络进行特征提取,同时引入ASPP(Atrous Spatia... 针对现有小样本目标检测模型存在的尺度变化问题,支持集与查询集之间的外观变化、遮挡导致的误检与漏检问题,本文提出一种融合多尺度特征与注意力的小样本目标检测模型.首先,采用ResNet-101网络进行特征提取,同时引入ASPP(Atrous Spatial Pyramid Pooling)模块获取不同的感受野,以捕获目标细节信息的多尺度特征.其次,采用Bi-FPN网络进行多尺度特征融合,获得更具代表性的查询特征与支持特征,有效缓解尺度变化问题.然后,利用提出的注意力引导特征增强模块对查询特征与支持特征进行自身关注,使得它们具有更好的判别能力,由此促进查询特征与支持特征的融合,以更好地应对外观变化和遮挡带来的挑战,从而缓解误检、漏检问题.最后,将分类头与边界框回归头进行解耦,分别对RPN网络基于细粒度查询特征产生的候选区域进行目标分类与目标定位.在PASCAL VOC与MS COCO数据集上的实验结果表明,所提模型的检测性能优于主流的小样本目标检测模型,相较于基线模型DCNet,mAP平均分别提升了3.5%与2.1%. 展开更多
关键词 小样本学习 元学习 目标检测 多尺度特征融合 注意力机制
在线阅读 下载PDF
结合倒残差自注意力机制的遥感图像目标检测
15
作者 赵文清 赵振寰 巩佳潇 《智能系统学报》 北大核心 2025年第1期64-72,共9页
针对遥感图像目标检测存在背景信息干扰严重、待检测目标尺寸差异大等问题,提出一种结合倒残差自注意力机制的目标检测方法。首先,使用具有强特征提取能力的倒残差自注意力机制骨干网络充分提取目标特征,降低复杂背景信息的干扰;其次,... 针对遥感图像目标检测存在背景信息干扰严重、待检测目标尺寸差异大等问题,提出一种结合倒残差自注意力机制的目标检测方法。首先,使用具有强特征提取能力的倒残差自注意力机制骨干网络充分提取目标特征,降低复杂背景信息的干扰;其次,构造多尺度空间金字塔池化模块,提供多尺度感受野,增强捕捉不同尺寸目标的能力;最后,提出轻量级特征融合模块,对骨干网络提取的特征图进行融合,充分结合低层与高层特征,提高网络对不同尺寸目标的检测能力。与传统网络及其他改进目标检测算法进行对比,实验发现该方法的检测精度明显优于其他算法。此外,在DIOR数据集和RSOD数据集上设计消融实验,结果表明,该方法在DIOR数据集与RSOD数据集上的平均精度均值比YOLOv8算法分别提升4.6和4.2百分点,明显提升遥感图像目标检测的精度。 展开更多
关键词 遥感图像 目标检测 倒残差 注意力机制 多尺度 空间金字塔 特征提取 特征融合
在线阅读 下载PDF
基于注意力机制的双卷积图像去噪网络
16
作者 周先春 吕梦楠 +3 位作者 芮旸 唐彬鑫 杜志亭 陈玉泽 《电子测量与仪器学报》 北大核心 2025年第2期60-71,共12页
近年来,深度卷积神经网络在图像去噪领域表现出了优越的性能。然而,深度网络结构往往伴随着大量的模型参数,导致训练成本高,推理时间长,限制了其在实际去噪任务中的应用。提出了一种新的基于注意力机制的双卷积图像去噪网络(MA-DFRNet)... 近年来,深度卷积神经网络在图像去噪领域表现出了优越的性能。然而,深度网络结构往往伴随着大量的模型参数,导致训练成本高,推理时间长,限制了其在实际去噪任务中的应用。提出了一种新的基于注意力机制的双卷积图像去噪网络(MA-DFRNet),它由多尺度特征特征提取网络、双卷积神经网络及动态特征精炼注意力机制组成。多尺度特征提取网络通过不同尺度的卷积获取图像特征,提高灵活性。双卷积神经网络上下分支均采用跳跃连接及扩张卷积来增大感受野。动态特征精炼注意力机制增强特征表示的精度和区分能力。这种结构设计不仅扩大了感受野,还更有效地提取和融合图像特征,显著提升去噪效果。研究结果表明,与最先进的模型相比,提出的MA-DFRNet在所有对比的噪声水平下具有更高的峰值信噪比(PSNR)和结构相似性(SSIM)值,PSNR提高了0.2 dB左右,SSIM提高了1%左右,对于噪声水平较高的图像更具鲁棒性,并且在视觉上更好地保留了图像细节,实现去噪和细节保留之间的平衡。 展开更多
关键词 图像去噪 卷积神经网络 注意力机制 跳跃连接 多尺度特征提取网络
在线阅读 下载PDF
融合注意力与多尺度特征的城市街景实例分割
17
作者 王军 吕佳 程勇 《计算机系统应用》 2025年第1期90-99,共10页
城市街道场景实例分割算法可以显著提升城市环境感知和智能交通系统的准确性与效率,针对城市街景行人和车辆之间相互遮挡和背景干扰严重等问题,提出一种基于频率注意力机制和多尺度特征融合的实例分割模型FMInst.首先,构建一种高低频注... 城市街道场景实例分割算法可以显著提升城市环境感知和智能交通系统的准确性与效率,针对城市街景行人和车辆之间相互遮挡和背景干扰严重等问题,提出一种基于频率注意力机制和多尺度特征融合的实例分割模型FMInst.首先,构建一种高低频注意力机制进行交互编码从而增加高分辨率细节信息.其次,在Swin Transformer主干网络的Patch Merging层引入软池化操作,减少特征信息损失,有效提高小尺度目标分割结果.最后,结合MLP层构建多尺度的深度卷积,有效增强目标局部信息提取,提升实例分割精度.在Cityscapes公共数据集进行对比实验,结果表明FMInst的mAP提高1.2%,达35.6%,同时AP50提高2.2%,达61.4%,极大地改善实例分割的掩码质量和分割效果. 展开更多
关键词 城市街景 实例分割 频率注意力机制 多尺度特征融合 小目标
在线阅读 下载PDF
基于多尺度特征融合和注意力机制的辣椒病害识别模型 被引量:3
18
作者 尚俊平 张冬阳 +2 位作者 席磊 刘合兵 苏楠 《河南农业大学学报》 CAS CSCD 北大核心 2024年第6期1021-1033,共13页
【目的】设计MobileNet with large convolution Unit(Mobile-LU)模型,解决由于辣椒病害种类复杂和类间差异不明显而造成的病害识别困难、准确率低等问题。【方法】重新构建MobileNetV3的特征提取层,在并行分支单元结构中采用不同尺度... 【目的】设计MobileNet with large convolution Unit(Mobile-LU)模型,解决由于辣椒病害种类复杂和类间差异不明显而造成的病害识别困难、准确率低等问题。【方法】重新构建MobileNetV3的特征提取层,在并行分支单元结构中采用不同尺度的分离卷积,增强模型对辣椒病害尺寸差异特征的表达能力;引入Squeeze-and-Excitation(SE)注意力机制,加强模型对病害相关的特征的学习,提高病害识别准确率;同时使用Leaky ReLU激活函数,在负值区域引入小的斜率,避免网络神经元死亡问题;调整输出层节点个数,更好适应辣椒病害分类任务。【结果】Mobile-LU模型的识别准确率达到98.2%,相较于MobilenetV3-small、ResNet34、VGG16、Alexnet、Swin Transformer、MobileVIT等模型分别高出8.9、7.3、4.4、20.4、6.0、8.3个百分点,且Mobile-LU模型在精确率、召回率、特异度以及F1分数等关键性能指标上也均有优势。【结论】Mobile-LU模型对辣椒病害的识别性能更优,能更好满足辣椒病害识别任务。 展开更多
关键词 辣椒病害 图像分类 SE注意力机制 深度可分离卷积 多尺度特征融合
在线阅读 下载PDF
结合细粒度特征与注意力机制的行人检测
19
作者 肖顺亮 强赞霞 +1 位作者 李丹阳 刘卫光 《计算机应用与软件》 北大核心 2025年第4期166-173,207,共9页
由于行人易被遮挡、尺度差异大等原因,导致行人漏检率高。针对这种情况,对基于Anchor-free思想的行人检测算法进行改进。针对卷积神经网络提取特征时对目标尺度变化敏感的问题,提出细粒度特征融合策略,获取丰富的行人特征信息。采用空... 由于行人易被遮挡、尺度差异大等原因,导致行人漏检率高。针对这种情况,对基于Anchor-free思想的行人检测算法进行改进。针对卷积神经网络提取特征时对目标尺度变化敏感的问题,提出细粒度特征融合策略,获取丰富的行人特征信息。采用空间域注意力机制对特征图不同区域进行权重学习,提高模型的表达能力。利用多尺度检测方法,使模型自适应检测不同尺度的行人,增强模型检测时的鲁棒性。实验结果表明,改进算法在Cityperson数据集的Reasonable、Bare、Partial和Heavy子集上分别取得11.33%、6.81%、11.52%和50.09%的MR-2,性能优于其他行人检测算法。 展开更多
关键词 行人检测 无锚框 特征融合 多尺度 注意力机制
在线阅读 下载PDF
基于多尺度注意力自适应去噪网络的局部放电模式识别
20
作者 郑尚坡 刘俊峰 +3 位作者 曾君 廖晓青 陈历 许建远 《高电压技术》 北大核心 2025年第4期1958-1968,共11页
局部放电的故障类型与气体绝缘开关(gas insulated switchgear,GIS)绝缘故障的严重程度紧密相关,精确识别局部放电故障类型对保障供电系统的稳定性至关重要。传统局部放电模式识别方法缺乏自适应去噪和对多尺度故障特征的处理机制,并且... 局部放电的故障类型与气体绝缘开关(gas insulated switchgear,GIS)绝缘故障的严重程度紧密相关,精确识别局部放电故障类型对保障供电系统的稳定性至关重要。传统局部放电模式识别方法缺乏自适应去噪和对多尺度故障特征的处理机制,并且过于依赖专家经验,以至于在处理含有大量噪声和固有多尺度特性的复杂局部放电信号时存在显著局限性,从而限制了模型对于局部放电故障识别准确率的进一步提升。为解决这些问题,提出一种多尺度注意力自适应去噪网络(multi-scale attention adaptive denoising network,MAADNet),该网络集成了多尺度特征学习模块、卷积注意力模块(convolutional block attention module,CBAM)以及软阈值函数,具备强大的自适应去噪和多尺度故障特征学习能力。具体而言,多尺度特征学习模块通过采用不同空洞率的空洞卷积以提取多尺度特征;而CBAM注意力机制和软阈值函数协同工作,依据输入局部放电信号的特性自适应调整去噪阈值,有效实现噪声抑制。此外,为验证所提网络有效性,通过搭建局部放电试验平台,设计并制作4种典型局放故障模型以收集不同故障类型的局部放电数据集。试验结果表明,所提方法在局部放电数据集上取得94.34%的识别准确率,优于其他先进方法,显示出良好的应用前景。 展开更多
关键词 气体绝缘开关 局部放电 模式识别 多尺度特征 注意力机制
在线阅读 下载PDF
上一页 1 2 58 下一页 到第
使用帮助 返回顶部