根据有限集统计方法,推导得到了可适用于不可分辨目标跟踪问题的势概率假设密度(cardinalized probability hypothesis density,CPHD)滤波器。类似传统的点目标CPHD滤波器,该不可分辨目标CPHD滤波器不仅可以递推地传递多目标状态集合的...根据有限集统计方法,推导得到了可适用于不可分辨目标跟踪问题的势概率假设密度(cardinalized probability hypothesis density,CPHD)滤波器。类似传统的点目标CPHD滤波器,该不可分辨目标CPHD滤波器不仅可以递推地传递多目标状态集合的一阶统计矩,还可以传递多目标个数(即势)的概率分布。蒙特卡罗仿真实验表明,相比Mahler提出的不可分辨目标PHD滤波器,所提出的不可分辨目标CPHD滤波器具有更加精确和稳定的多目标个数和状态估计,但它的计算量要大于不可分辨目标PHD滤波器。展开更多
研究了同步定位与地图创建(SLAM)中的数据关联问题。针对环境特征数未知时,数据关联的误关联率增加,导致SLAM的定位精度偏低的问题,提出了高斯混合概率假设密度SLAM算法。首先采用UFastSLAM解决SLAM中的粒子退化和耗尽问题,其次针对地...研究了同步定位与地图创建(SLAM)中的数据关联问题。针对环境特征数未知时,数据关联的误关联率增加,导致SLAM的定位精度偏低的问题,提出了高斯混合概率假设密度SLAM算法。首先采用UFastSLAM解决SLAM中的粒子退化和耗尽问题,其次针对地图特征数未知的情况,将UFastSLAM算法中的数据关联问题转换成有限集统计理论跟踪算法的高斯混合问题,利用高斯混合概率假设密度(Gaussian Mixture Probability Hypothesis Density,GMPHD)算法解决UFastSLAM中数据关联问题。仿真实验结果表明本文提出的GMPHD-UFastSLAM算法在地图特征个数未知的情况下,数据关联准确率和定位精度都得到了提高。展开更多
文摘根据有限集统计方法,推导得到了可适用于不可分辨目标跟踪问题的势概率假设密度(cardinalized probability hypothesis density,CPHD)滤波器。类似传统的点目标CPHD滤波器,该不可分辨目标CPHD滤波器不仅可以递推地传递多目标状态集合的一阶统计矩,还可以传递多目标个数(即势)的概率分布。蒙特卡罗仿真实验表明,相比Mahler提出的不可分辨目标PHD滤波器,所提出的不可分辨目标CPHD滤波器具有更加精确和稳定的多目标个数和状态估计,但它的计算量要大于不可分辨目标PHD滤波器。
文摘研究了同步定位与地图创建(SLAM)中的数据关联问题。针对环境特征数未知时,数据关联的误关联率增加,导致SLAM的定位精度偏低的问题,提出了高斯混合概率假设密度SLAM算法。首先采用UFastSLAM解决SLAM中的粒子退化和耗尽问题,其次针对地图特征数未知的情况,将UFastSLAM算法中的数据关联问题转换成有限集统计理论跟踪算法的高斯混合问题,利用高斯混合概率假设密度(Gaussian Mixture Probability Hypothesis Density,GMPHD)算法解决UFastSLAM中数据关联问题。仿真实验结果表明本文提出的GMPHD-UFastSLAM算法在地图特征个数未知的情况下,数据关联准确率和定位精度都得到了提高。