期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于改进Apriori算法的高校教育满意度关联规则挖掘 被引量:1
1
作者 陈云超 谢加良 +1 位作者 林玲 刘小辉 《集美大学学报(自然科学版)》 CAS 2024年第4期377-384,共8页
针对经典关联规则Apriori算法在大数据集情境下易产生冗余和误导性的关联规则,以及难以确认关键性关联规则等问题,提出支持度—置信度—权重检验系数框架与后项约束的改进Apriori算法。首先,定义相关性系数、提升系数、错误系数并进行... 针对经典关联规则Apriori算法在大数据集情境下易产生冗余和误导性的关联规则,以及难以确认关键性关联规则等问题,提出支持度—置信度—权重检验系数框架与后项约束的改进Apriori算法。首先,定义相关性系数、提升系数、错误系数并进行证明分析,进而构建权重检验系数;其次,运用主成分分析法,提取指标中的高权重影响因素作为后项,通过后项约束过滤冗余关联信息,从而筛选出更为准确的关键性关联规则。将改进的Apriori算法应用于高校教育满意度调查数据的关联规则挖掘并进行分析对比,实验结果验证了该算法的合理性和有效性。 展开更多
关键词 高校教育满意度 数据挖掘 关联规则 APRIORI算法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部