The structure and coordination properties of N,N bis(N methylene 2 pyrrolidinyl)alanine have been studied. The results show that the title compound is stable, the geometry calculated by AM1 is in good agreement with e...The structure and coordination properties of N,N bis(N methylene 2 pyrrolidinyl)alanine have been studied. The results show that the title compound is stable, the geometry calculated by AM1 is in good agreement with experimental results. The atoms of O(1),O(15), O(19),O(20) in the molecule bond easily with metallic atoms. So the title compound can form stable complex with rare earth metal ions.展开更多
The new room-temperature molten salt was prepared based on LiTFSI[LiNC(SO 2CF 3) 2] with OZO(C 3H 5NO 2) which were not reported in literature. Its thermal and electrochemical properties were studied by differential s...The new room-temperature molten salt was prepared based on LiTFSI[LiNC(SO 2CF 3) 2] with OZO(C 3H 5NO 2) which were not reported in literature. Its thermal and electrochemical properties were studied by differential scanning calorimetry, ac impedance spectroscopy and cyclic voltammertry respectively. The results indicated that the structure symmetry of the molecule was depressed and the extent of charges delocalization was expanded, because of introducing oxygen atom of differential electronegativity in OZO molecule. DSC analysis showed that the LiTFSI-OZO molten salt has the excellent thermal stability and its eutectic temperature is below about 223.15 K. Meanwhile, the conductivity of LiTFSI-OZO molten salt at a molar ratio of 1∶4.5 is 0.75×10 -3 S/cm at 298.15 K and 3.50×10 -3 S/cm at 333.15 K. CV analysis showed that the electrochemical window of the sample is about 4 V.展开更多
文摘The structure and coordination properties of N,N bis(N methylene 2 pyrrolidinyl)alanine have been studied. The results show that the title compound is stable, the geometry calculated by AM1 is in good agreement with experimental results. The atoms of O(1),O(15), O(19),O(20) in the molecule bond easily with metallic atoms. So the title compound can form stable complex with rare earth metal ions.
文摘The new room-temperature molten salt was prepared based on LiTFSI[LiNC(SO 2CF 3) 2] with OZO(C 3H 5NO 2) which were not reported in literature. Its thermal and electrochemical properties were studied by differential scanning calorimetry, ac impedance spectroscopy and cyclic voltammertry respectively. The results indicated that the structure symmetry of the molecule was depressed and the extent of charges delocalization was expanded, because of introducing oxygen atom of differential electronegativity in OZO molecule. DSC analysis showed that the LiTFSI-OZO molten salt has the excellent thermal stability and its eutectic temperature is below about 223.15 K. Meanwhile, the conductivity of LiTFSI-OZO molten salt at a molar ratio of 1∶4.5 is 0.75×10 -3 S/cm at 298.15 K and 3.50×10 -3 S/cm at 333.15 K. CV analysis showed that the electrochemical window of the sample is about 4 V.