In recent few years, significant improvement has been made in developing largescale 3 D printer to accommodate the need of industrial-scale 3 D printing. Cementitious materials that are compatible with 3 D printing pr...In recent few years, significant improvement has been made in developing largescale 3 D printer to accommodate the need of industrial-scale 3 D printing. Cementitious materials that are compatible with 3 D printing promote rapid application of this innovative technique in the construction field with advantages of cost effective, high efficiency, design flexibility and environmental friendly. This paper firstly reviews existing 3 D printing techniques that are currently being used in commercial3 D printers. It then summarizes three latest development of largescale 3 D printing systems and identifies their relationships and limiting factors. Thereafter, critical factors that are used to evaluate the workability and printable performance of cementitious materials are specified. Easy-extrusive, easy-flowing, well-buildable, and proper setting time are significant for cementitious material to meet the critical requirements of a freeform construction process. Finally, main advantages, potential applications and the prospects of future research of 3 D printing in construction technology are suggested. The objective of this work is to review current design methodologies and operational constraints of largescale 3 D printing system and provide references for optimizing the performance of cementitious material and promote its responsible use with largescale 3 D printing technology.展开更多
The aim of this study was to prepare pulsatile release tablets which provide different drug delayed-release time and realize personalized administration according to the needs of patients.Fused deposition modeling(FDM...The aim of this study was to prepare pulsatile release tablets which provide different drug delayed-release time and realize personalized administration according to the needs of patients.Fused deposition modeling(FDM)3D printing technology was introduced into the field of pharmaceutics in this study,and the feasibility to prepare core-shell pulsatile release tablets was explored by combing 3D printing technology with the traditional manufacturing technology.The core of the pulsatile tablets was a commercial tablet obtained from the traditional technology,and the drug-free shell was prepared by the FDM 3D printing technology.Three kinds of tablet shells were designed using different parameters.Furthermore,the morphology,size,weight,hardness,and in vitro drug release of the 3D printed famotidine pusatile tablets were characterized and evaluated.The results showed that the 3D printed tablets appeared intact without any defects.Different parameters of outer shell affected the size,weight,hardness,and in vitro drug release of the tablets.The tablets achieved a personalized delayed release time varying from 5 to 7 h in vitro.In this way,a new method for preparing pulsatile release tablets and a new way for the personalized administration of pulsatile tablets were explored in this study.展开更多
Light-weight and high-strength materials have attracted considerable attention owing to their outstanding properties, such as weight-reducing, acoustic absorption, thermal insulation, shock and vibration damping. Diam...Light-weight and high-strength materials have attracted considerable attention owing to their outstanding properties, such as weight-reducing, acoustic absorption, thermal insulation, shock and vibration damping. Diamond possesses specific stiffness and strength arising from its special crystal structure. In this work, inspired by the diamond crystal structure, hollow-tube nickel materials with the diamond structure were fabricated using a diamond structured polymer template based on the Stereo Lithography Appearance technology. The diamond structured template was coated with Ni-P by electroless plating. Finally, the template was removed by high temperature calcinations. The density of the hollow tube nickel materials is about 20 mg/cm3. The morphology and composition of the resultant materials were characterized by scanning electron microscope, energy-dispersive spectrometry, and X-ray diffraction. The results showed that the surface of the Ni film was uniform with the thickness of 4 gm. The mechanical property was also measured by stress and strain tester. The maximum compression stress can be reached to 40.6 KPa.展开更多
基金supported by the National Major Research Instrument Development Project of the National Natural Science Foundation of China(51627812)the opening project of State Key Laboratory of Explosion Science and Technology(Beijing Institute of Technology,KFJJ13-11M)
文摘In recent few years, significant improvement has been made in developing largescale 3 D printer to accommodate the need of industrial-scale 3 D printing. Cementitious materials that are compatible with 3 D printing promote rapid application of this innovative technique in the construction field with advantages of cost effective, high efficiency, design flexibility and environmental friendly. This paper firstly reviews existing 3 D printing techniques that are currently being used in commercial3 D printers. It then summarizes three latest development of largescale 3 D printing systems and identifies their relationships and limiting factors. Thereafter, critical factors that are used to evaluate the workability and printable performance of cementitious materials are specified. Easy-extrusive, easy-flowing, well-buildable, and proper setting time are significant for cementitious material to meet the critical requirements of a freeform construction process. Finally, main advantages, potential applications and the prospects of future research of 3 D printing in construction technology are suggested. The objective of this work is to review current design methodologies and operational constraints of largescale 3 D printing system and provide references for optimizing the performance of cementitious material and promote its responsible use with largescale 3 D printing technology.
文摘The aim of this study was to prepare pulsatile release tablets which provide different drug delayed-release time and realize personalized administration according to the needs of patients.Fused deposition modeling(FDM)3D printing technology was introduced into the field of pharmaceutics in this study,and the feasibility to prepare core-shell pulsatile release tablets was explored by combing 3D printing technology with the traditional manufacturing technology.The core of the pulsatile tablets was a commercial tablet obtained from the traditional technology,and the drug-free shell was prepared by the FDM 3D printing technology.Three kinds of tablet shells were designed using different parameters.Furthermore,the morphology,size,weight,hardness,and in vitro drug release of the 3D printed famotidine pusatile tablets were characterized and evaluated.The results showed that the 3D printed tablets appeared intact without any defects.Different parameters of outer shell affected the size,weight,hardness,and in vitro drug release of the tablets.The tablets achieved a personalized delayed release time varying from 5 to 7 h in vitro.In this way,a new method for preparing pulsatile release tablets and a new way for the personalized administration of pulsatile tablets were explored in this study.
基金support of the National Basic Research Program of China(2010CB934700)the National Natural Science Foundation of China(51372010)
文摘Light-weight and high-strength materials have attracted considerable attention owing to their outstanding properties, such as weight-reducing, acoustic absorption, thermal insulation, shock and vibration damping. Diamond possesses specific stiffness and strength arising from its special crystal structure. In this work, inspired by the diamond crystal structure, hollow-tube nickel materials with the diamond structure were fabricated using a diamond structured polymer template based on the Stereo Lithography Appearance technology. The diamond structured template was coated with Ni-P by electroless plating. Finally, the template was removed by high temperature calcinations. The density of the hollow tube nickel materials is about 20 mg/cm3. The morphology and composition of the resultant materials were characterized by scanning electron microscope, energy-dispersive spectrometry, and X-ray diffraction. The results showed that the surface of the Ni film was uniform with the thickness of 4 gm. The mechanical property was also measured by stress and strain tester. The maximum compression stress can be reached to 40.6 KPa.