-
题名一种3D残差神经网络视频行人动作分类改进方法
被引量:1
- 1
-
-
作者
陈思宇
毛琳
杨大伟
-
机构
大连民族大学机电工程学院
-
出处
《大连民族大学学报》
2019年第3期225-229,共5页
-
基金
辽宁省自然科学基金资助项目(20170540192,20180550866)
-
文摘
对于视频行人动作分类方法中,卷积神经网络模型对时域信息理解能力不足的问题,针对拥有深层的3D残差卷积神经网络提出一种联合计算方法,使深层特征的时域信息差异与损失差异共同参与模型的梯度下降过程,提升网络所学特征对时域信息的稳健表达,改进网络对时域信息的理解能力。经仿真实验证明,3DResNeXt-101网络在添加了联合计算方法后,对UCF-101和HMDB-51数据集的测试准确度都有不同程度的提升,网络模型的性能经由联合计算方法的辅助得到了增强。
-
关键词
3d残差神经网络
时域信息
时域差异
联合计算
-
Keywords
3d ResNets
temporal information
temporal difference
joint calculation
-
分类号
TP183
[自动化与计算机技术—控制理论与控制工程]
-