应用传统的压缩感知理论对天线阵列信号的波达方向(Direction-of-arrival,DOA)进行估计,存在基的失配问题。基于交替方向乘子法(Alternative Direction Method of Multiplier,ADMM)的无网格压缩感知(Grid-less Compressive Sensing)技...应用传统的压缩感知理论对天线阵列信号的波达方向(Direction-of-arrival,DOA)进行估计,存在基的失配问题。基于交替方向乘子法(Alternative Direction Method of Multiplier,ADMM)的无网格压缩感知(Grid-less Compressive Sensing)技术能够解决该问题,但仍存在收敛速度慢的缺陷。针对该缺陷,提出带自适应惩罚项的ADMM(ADMM with adaptive penalty,AP-ADMM)算法,即根据输入信号的噪声功率,自适应地选择惩罚项的初始值;同时在算法迭代求解的过程中,自适应地对目标函数的惩罚项进行调整。与传统算法相比,在保证收敛精度和DOA的恢复成功概率的条件下,带自适应惩罚项的ADMM算法收敛速率明显加快。仿真结果验证了新算法的有效性。展开更多
语义分割是遥感影像分析中的重要技术之一。现有方法(如基于深度卷积神经网络的方法等)虽然在语义分割中取得了显著进展,但往往需要大量训练数据。基于图模型的马尔可夫随机场模型(Markov random field model,MRF)提出了一种不依赖训练...语义分割是遥感影像分析中的重要技术之一。现有方法(如基于深度卷积神经网络的方法等)虽然在语义分割中取得了显著进展,但往往需要大量训练数据。基于图模型的马尔可夫随机场模型(Markov random field model,MRF)提出了一种不依赖训练数据的无监督语义分割思路,可以有效地刻画地物空间关系,并对地物空间分布的统计规律进行建模。但现有的MRF模型方法通常建立在基于像素或对象的单一粒度基元上,难以充分利用影像信息,语义分割效果不佳。针对上述问题,引入交替方向乘子法(alternative direction method of multiplier,ADMM)并将其离散化,提出了一种像素与对象基元协同的MRF模型无监督语义分割方法(MRF-ADMM)。首先构建像素基元和对象基元两个概率图,其中像素基元概率图用于刻画影像的细节信息,保持语义分割的边界;对象基元概率图用于描述较大范围的空间关系,以应对遥感影像地物内部的高异质性,使分割结果中地物内部具有良好的区域完整性。在模型求解过程中,针对像素和对象基元的特点,提出了一种离散化的ADMM方法,并将其用于两种基元类别标记的传递与更新,实现像素基元细节信息和对象基元区域信息的协同优化。高分二号和航拍影像等不同数据库不同类型遥感影像的语义分割实验结果表明,相较于现有的MRF模型,提出的MRF-ADMM方法能有效地协同不同粒度基元的优点,优化语义分割结果。展开更多
文摘应用传统的压缩感知理论对天线阵列信号的波达方向(Direction-of-arrival,DOA)进行估计,存在基的失配问题。基于交替方向乘子法(Alternative Direction Method of Multiplier,ADMM)的无网格压缩感知(Grid-less Compressive Sensing)技术能够解决该问题,但仍存在收敛速度慢的缺陷。针对该缺陷,提出带自适应惩罚项的ADMM(ADMM with adaptive penalty,AP-ADMM)算法,即根据输入信号的噪声功率,自适应地选择惩罚项的初始值;同时在算法迭代求解的过程中,自适应地对目标函数的惩罚项进行调整。与传统算法相比,在保证收敛精度和DOA的恢复成功概率的条件下,带自适应惩罚项的ADMM算法收敛速率明显加快。仿真结果验证了新算法的有效性。
文摘语义分割是遥感影像分析中的重要技术之一。现有方法(如基于深度卷积神经网络的方法等)虽然在语义分割中取得了显著进展,但往往需要大量训练数据。基于图模型的马尔可夫随机场模型(Markov random field model,MRF)提出了一种不依赖训练数据的无监督语义分割思路,可以有效地刻画地物空间关系,并对地物空间分布的统计规律进行建模。但现有的MRF模型方法通常建立在基于像素或对象的单一粒度基元上,难以充分利用影像信息,语义分割效果不佳。针对上述问题,引入交替方向乘子法(alternative direction method of multiplier,ADMM)并将其离散化,提出了一种像素与对象基元协同的MRF模型无监督语义分割方法(MRF-ADMM)。首先构建像素基元和对象基元两个概率图,其中像素基元概率图用于刻画影像的细节信息,保持语义分割的边界;对象基元概率图用于描述较大范围的空间关系,以应对遥感影像地物内部的高异质性,使分割结果中地物内部具有良好的区域完整性。在模型求解过程中,针对像素和对象基元的特点,提出了一种离散化的ADMM方法,并将其用于两种基元类别标记的传递与更新,实现像素基元细节信息和对象基元区域信息的协同优化。高分二号和航拍影像等不同数据库不同类型遥感影像的语义分割实验结果表明,相较于现有的MRF模型,提出的MRF-ADMM方法能有效地协同不同粒度基元的优点,优化语义分割结果。