【目的】针对极限学习机(ELM)神经网络在室内可见光定位(VLP)中收敛不稳定,易陷入局部最优状态,导致定位精度降低的问题,文章引入了麻雀搜索算法(SSA)确定ELM神经网络的初始权值和阈值,提出了SSA-ELM神经网络算法。【方法】首先,采集定...【目的】针对极限学习机(ELM)神经网络在室内可见光定位(VLP)中收敛不稳定,易陷入局部最优状态,导致定位精度降低的问题,文章引入了麻雀搜索算法(SSA)确定ELM神经网络的初始权值和阈值,提出了SSA-ELM神经网络算法。【方法】首先,采集定位区域内接收信号强度(RSS)与位置信息作为指纹数据;然后,训练SSA-ELM神经网络并得到预测模型,将测试集数据输入预测模型得到待测位置的定位结果;最后,设计了仿真实验和测试平台。【结果】仿真表明,在立体空间模型中0、0.3、0.6和0.9 m 4个接收高度,平均误差分别为1.73、1.86、2.18和3.47 cm,与反向传播(BP)、SSA-BP和ELM定位算法相比,SSA-ELM神经网络算法定位精度分别提高了83.55%、45.71%和26.26%,定位时间分别降低了36.48%、17.69%和6.61%。实验测试表明,文章所提SSA-ELM神经网络算法的平均定位误差为3.75 cm,比未优化的ELM神经网络定位精度提高了16.38%。【结论】SSA对ELM神经网络具有明显的优化作用,能够显著降低定位误差,减少定位时间。展开更多
为了解决传统室内定位技术成本较高、稳定性差以及难于部署等问题,提出一种将到达时间(time of arrival,TOA)与到达角(angle of arrival,AOA)相结合的室内定位系统.该系统由定位基站与被控定位单元组成,其特征在于使用对射式布置的超声...为了解决传统室内定位技术成本较高、稳定性差以及难于部署等问题,提出一种将到达时间(time of arrival,TOA)与到达角(angle of arrival,AOA)相结合的室内定位系统.该系统由定位基站与被控定位单元组成,其特征在于使用对射式布置的超声波传感器获取定位基站与被控定位单元之间的距离特征,利用角度传感器获取被控定位单元相对于定位基站的角度特征,以单基站就实现了精确的室内定位过程.分析了该系统基本结构与原理,建立定位与控制模型,在一定范围内对其定点定位精度与跟随定位精度进行了实验验证.实验结果表明:该系统结构简单,易于安装布置,鲁棒性强,在测试范围内的最大定点定位误差不超过5 cm,跟随定位误差不超过15 cm.展开更多
文摘【目的】针对极限学习机(ELM)神经网络在室内可见光定位(VLP)中收敛不稳定,易陷入局部最优状态,导致定位精度降低的问题,文章引入了麻雀搜索算法(SSA)确定ELM神经网络的初始权值和阈值,提出了SSA-ELM神经网络算法。【方法】首先,采集定位区域内接收信号强度(RSS)与位置信息作为指纹数据;然后,训练SSA-ELM神经网络并得到预测模型,将测试集数据输入预测模型得到待测位置的定位结果;最后,设计了仿真实验和测试平台。【结果】仿真表明,在立体空间模型中0、0.3、0.6和0.9 m 4个接收高度,平均误差分别为1.73、1.86、2.18和3.47 cm,与反向传播(BP)、SSA-BP和ELM定位算法相比,SSA-ELM神经网络算法定位精度分别提高了83.55%、45.71%和26.26%,定位时间分别降低了36.48%、17.69%和6.61%。实验测试表明,文章所提SSA-ELM神经网络算法的平均定位误差为3.75 cm,比未优化的ELM神经网络定位精度提高了16.38%。【结论】SSA对ELM神经网络具有明显的优化作用,能够显著降低定位误差,减少定位时间。
文摘为了解决传统室内定位技术成本较高、稳定性差以及难于部署等问题,提出一种将到达时间(time of arrival,TOA)与到达角(angle of arrival,AOA)相结合的室内定位系统.该系统由定位基站与被控定位单元组成,其特征在于使用对射式布置的超声波传感器获取定位基站与被控定位单元之间的距离特征,利用角度传感器获取被控定位单元相对于定位基站的角度特征,以单基站就实现了精确的室内定位过程.分析了该系统基本结构与原理,建立定位与控制模型,在一定范围内对其定点定位精度与跟随定位精度进行了实验验证.实验结果表明:该系统结构简单,易于安装布置,鲁棒性强,在测试范围内的最大定点定位误差不超过5 cm,跟随定位误差不超过15 cm.