Boosting is one of the most representational ensemble prediction methods. It can be divided into two se-ries: Boost-by-majority and Adaboost. This paper briefly introduces the research status of Boosting and one of it...Boosting is one of the most representational ensemble prediction methods. It can be divided into two se-ries: Boost-by-majority and Adaboost. This paper briefly introduces the research status of Boosting and one of its seri-als-AdaBoost,analyzes the typical algorithms of AdaBoost.展开更多
Cardiotocography is one of the most widely used technique for recording changes in fetal heart rate (FHR) and uterine contractions. Assessing cardiotocography is crucial in that it leads to iden- tifying fetuses which...Cardiotocography is one of the most widely used technique for recording changes in fetal heart rate (FHR) and uterine contractions. Assessing cardiotocography is crucial in that it leads to iden- tifying fetuses which suffer from lack of oxygen, i.e. hypoxia. This situation is defined as fetal dis- tress and requires fetal intervention in order to prevent fetus death or other neurological disease caused by hypoxia. In this study a computer-based approach for analyzing cardiotocogram in- cluding diagnostic features for discriminating a pathologic fetus. In order to achieve this aim adaptive boosting ensemble of decision trees and various other machine learning algorithms are employed.展开更多
文摘Boosting is one of the most representational ensemble prediction methods. It can be divided into two se-ries: Boost-by-majority and Adaboost. This paper briefly introduces the research status of Boosting and one of its seri-als-AdaBoost,analyzes the typical algorithms of AdaBoost.
文摘Cardiotocography is one of the most widely used technique for recording changes in fetal heart rate (FHR) and uterine contractions. Assessing cardiotocography is crucial in that it leads to iden- tifying fetuses which suffer from lack of oxygen, i.e. hypoxia. This situation is defined as fetal dis- tress and requires fetal intervention in order to prevent fetus death or other neurological disease caused by hypoxia. In this study a computer-based approach for analyzing cardiotocogram in- cluding diagnostic features for discriminating a pathologic fetus. In order to achieve this aim adaptive boosting ensemble of decision trees and various other machine learning algorithms are employed.