Superwetting materials have drawn unprecedented attention in the treatment of oily wastewater due to their preferable anti-fouling property and selective oil/water separation.However,it is still a challenge to fabrica...Superwetting materials have drawn unprecedented attention in the treatment of oily wastewater due to their preferable anti-fouling property and selective oil/water separation.However,it is still a challenge to fabricate multifunctional and environmentally friendly materials,which can be stably applied to purify the actual complicated wastewater.Here,a Ag/Ag/α-Fe_(2)O_(3) heterostructure anchored copper mesh was intentionally synthesized using a facile two-step hydrothermal method.The resultant mesh with superhydrophilicity and underwater superoleophobicity was capable of separating various oil/water mixtures with superior separation efficiency and high permeationflux driven by gravity.Benefiting from the joint effects of the smaller band gap of Ag/α-Fe_(2)O_(3) heterojunction,inherent antibacterial capacity of Ag/α-Fe_(2)O_(3) and Ag nanoparticles,favorable conductive substrate,as well as the hierarchical structure with superwettability,such mesh presented remarkably enhanced degradation capability toward organic dyes under visible light irradiation and antibacterial activity against both Escherichia coli(E.coli)and Staphylococcus aureus(S.aureus)compared with the pure Ag/α-Fe_(2)O_(3) coated mesh.Impressively,the mesh exhibited bifunctional water purification performance,in which organic dyes were eliminated simultaneously from water during oil/water separation in onefiltration process.More importantly,this mesh behaved exceptional chemical resistance,mechanical stability and long-term reusability.Therefore,this material with multifunctional integration may hold promising potential for steady water purification in practice.展开更多
系统研究了Ag Sn In Ni合金内氧化法制备Ag-Sn O_(2)-In_(2)O_(3)-Ni O电接触材料的微观组织演变机理及氧化物颗粒分布的调控。结果表明,退火工艺决定了Ag Sn In Ni的缺陷状态,随退火温度的升高,合金中缺陷密度降低,内氧化速度减慢。内...系统研究了Ag Sn In Ni合金内氧化法制备Ag-Sn O_(2)-In_(2)O_(3)-Ni O电接触材料的微观组织演变机理及氧化物颗粒分布的调控。结果表明,退火工艺决定了Ag Sn In Ni的缺陷状态,随退火温度的升高,合金中缺陷密度降低,内氧化速度减慢。内氧化过程中银合金同时发生回复与再结晶,但内氧化形成的Sn O_(2)和In_(2)O_(3)颗粒可钉扎位错、亚晶界等缺陷,抑制再结晶的发生。Ag-Sn O_(2)-In_(2)O_(3)-Ni O合金微观组织的差异是O原子沿着缺陷向样品内部扩散与Ag合金基体发生再结晶的相互竞争的结果,这导致了芯部组织为氧化物密度较低的颗粒状分布,而外侧组织为氧化物颗粒沿着缺陷墙呈现束装聚集分布。退火工艺为550℃/2 h、氧化工艺为700℃/0.3 MPa×26 h时,可获得氧化物尺寸和分布一致性高的Ag-Sn O_(2)-In_(2)O_(3)-Ni O材料。展开更多
Since the catalytic activity of most nanozymes is still far lower than the corresponding natural enzymes,there is urgent need to discover novel highly efficient enzyme-like materials.In this work,Co_(3)V_(2)O_(8)with ...Since the catalytic activity of most nanozymes is still far lower than the corresponding natural enzymes,there is urgent need to discover novel highly efficient enzyme-like materials.In this work,Co_(3)V_(2)O_(8)with hollow hexagonal prismatic pencil structures were prepared as novel artificial enzyme mimics.They were then decorated by photo-depositing Ag nanoparticles(Ag NPs)on the surface to further improve its catalytic activities.The Ag NPs decorated Co_(3)V_(2)O_(8)(ACVPs)showed both excellent oxidase-and peroxidase-like catalytic activities.They can oxidize the colorless 3,3’,5,5’-tetramethylbenzidine rapidly to induce a blue change.The enhanced enzyme mimetic activities can be attributed to the surface plasma resonance(SPR)effect of Ag NPs as well as the synergistic catalytic effect between Ag NPs and Co_(3)V_(2)O_(8),accelerating electron transfer and promoting the catalytic process.ACVPs were applied in constructing a colorimetric sensor,validating the occurrence of the Fenton reaction,and disinfection,presenting favorable catalytic performance.The enzyme-like catalytic mechanism was studied,indicating the chief role of⋅O_(2)-radicals in the catalytic process.This work not only discovers a novel functional material with double enzyme mimetic activity but also provides a new insight into exploiting artificial enzyme mimics with highly efficient catalytic ability.展开更多
基金supported by the Natural Science Youth Foundation of Jiangsu Province,China(BK20130198)Fundamental Research Funds for the Central Universities,China(2013XK07)~~
基金This work was financially supported by the Shandong Provincial Natural Science Foundation(ZR2020QB116)the Excellent Young Talents Foundation in Universities of Anhui Province(gxyq2021223)the Key Research Project of Natural Science in Universities of Anhui Province.(KJ2020A0749).
文摘Superwetting materials have drawn unprecedented attention in the treatment of oily wastewater due to their preferable anti-fouling property and selective oil/water separation.However,it is still a challenge to fabricate multifunctional and environmentally friendly materials,which can be stably applied to purify the actual complicated wastewater.Here,a Ag/Ag/α-Fe_(2)O_(3) heterostructure anchored copper mesh was intentionally synthesized using a facile two-step hydrothermal method.The resultant mesh with superhydrophilicity and underwater superoleophobicity was capable of separating various oil/water mixtures with superior separation efficiency and high permeationflux driven by gravity.Benefiting from the joint effects of the smaller band gap of Ag/α-Fe_(2)O_(3) heterojunction,inherent antibacterial capacity of Ag/α-Fe_(2)O_(3) and Ag nanoparticles,favorable conductive substrate,as well as the hierarchical structure with superwettability,such mesh presented remarkably enhanced degradation capability toward organic dyes under visible light irradiation and antibacterial activity against both Escherichia coli(E.coli)and Staphylococcus aureus(S.aureus)compared with the pure Ag/α-Fe_(2)O_(3) coated mesh.Impressively,the mesh exhibited bifunctional water purification performance,in which organic dyes were eliminated simultaneously from water during oil/water separation in onefiltration process.More importantly,this mesh behaved exceptional chemical resistance,mechanical stability and long-term reusability.Therefore,this material with multifunctional integration may hold promising potential for steady water purification in practice.
文摘系统研究了Ag Sn In Ni合金内氧化法制备Ag-Sn O_(2)-In_(2)O_(3)-Ni O电接触材料的微观组织演变机理及氧化物颗粒分布的调控。结果表明,退火工艺决定了Ag Sn In Ni的缺陷状态,随退火温度的升高,合金中缺陷密度降低,内氧化速度减慢。内氧化过程中银合金同时发生回复与再结晶,但内氧化形成的Sn O_(2)和In_(2)O_(3)颗粒可钉扎位错、亚晶界等缺陷,抑制再结晶的发生。Ag-Sn O_(2)-In_(2)O_(3)-Ni O合金微观组织的差异是O原子沿着缺陷向样品内部扩散与Ag合金基体发生再结晶的相互竞争的结果,这导致了芯部组织为氧化物密度较低的颗粒状分布,而外侧组织为氧化物颗粒沿着缺陷墙呈现束装聚集分布。退火工艺为550℃/2 h、氧化工艺为700℃/0.3 MPa×26 h时,可获得氧化物尺寸和分布一致性高的Ag-Sn O_(2)-In_(2)O_(3)-Ni O材料。
基金supported by National Natural Science Foundation of China(52208272,41706080 and 51702328)the Basic Scientific Fund for National Public Research Institutes of China(2020S02 and 2019Y03)+3 种基金the Basic Frontier Science Research Program of Chinese Academy of Sciences(ZDBS-LY-DQC025)the Young Elite Scientists Sponsorship Program by CAST(No.YESS20210201)the Strategic Leading Science&Technology Program of the Chinese Academy of Sciences(XDA13040403)the Key Research and Development Program of Shandong Province(Major Scientific and Technological Innovation Project)(2019JZZY020711).
文摘Since the catalytic activity of most nanozymes is still far lower than the corresponding natural enzymes,there is urgent need to discover novel highly efficient enzyme-like materials.In this work,Co_(3)V_(2)O_(8)with hollow hexagonal prismatic pencil structures were prepared as novel artificial enzyme mimics.They were then decorated by photo-depositing Ag nanoparticles(Ag NPs)on the surface to further improve its catalytic activities.The Ag NPs decorated Co_(3)V_(2)O_(8)(ACVPs)showed both excellent oxidase-and peroxidase-like catalytic activities.They can oxidize the colorless 3,3’,5,5’-tetramethylbenzidine rapidly to induce a blue change.The enhanced enzyme mimetic activities can be attributed to the surface plasma resonance(SPR)effect of Ag NPs as well as the synergistic catalytic effect between Ag NPs and Co_(3)V_(2)O_(8),accelerating electron transfer and promoting the catalytic process.ACVPs were applied in constructing a colorimetric sensor,validating the occurrence of the Fenton reaction,and disinfection,presenting favorable catalytic performance.The enzyme-like catalytic mechanism was studied,indicating the chief role of⋅O_(2)-radicals in the catalytic process.This work not only discovers a novel functional material with double enzyme mimetic activity but also provides a new insight into exploiting artificial enzyme mimics with highly efficient catalytic ability.