对于小电流接地系统的单相接地故障选线,传统方法普遍采用基于一维信号的选线模型,存在选线准确率低、抗噪性弱等问题。为此提出一种改进的变分模态分解及Conv Ne Xt的小电流接地系统单相接地故障选线方法。首先引入蚁狮算法优化变分模...对于小电流接地系统的单相接地故障选线,传统方法普遍采用基于一维信号的选线模型,存在选线准确率低、抗噪性弱等问题。为此提出一种改进的变分模态分解及Conv Ne Xt的小电流接地系统单相接地故障选线方法。首先引入蚁狮算法优化变分模态分解算法,通过蚁狮算法自动寻优选取合适的分解次数和惩罚因子,计算分解得到的各分量的分布熵,将其中的噪声分量筛选去除,将其余有效分量进行线性重构得到降噪后的零序电流信号;其次,将经过降噪处理后的一维零序电流信号经格拉姆角场转换为二维图像,制备故障选线数据集;然后,引入预训练的ConvNeXt模型,根据该研究数据模型特征,在其已有权重基础上对模型参数进行对应微调,从而提高模型精度并形成最终的选线模型;最后引入绝对平均误差、均方根误差作为评价指标验证所提降噪算法有效性。分别在加入噪声与否的前提下,将所提模型与3种选线模型相比较。实验结果表明该模型的准确率最高、抗噪性方面更好,其中该研究算法准确率达到了99.82%并且在不同噪声条件下都能维持91%以上的准确率,高于其他选线模型,克服了传统故障选线方法准确率低、抗噪性差的问题。展开更多
Web 2.0信息时代,信息量迅速增加,信息检索速率却显著降低,如何提高信息的自动分类管理水平,从海量数据中高效、准确、快速获取有价值的信息与知识成为智慧图书馆亟待研究与解决的问题。文章提出了在数字图书馆服务中运用新型文本聚类...Web 2.0信息时代,信息量迅速增加,信息检索速率却显著降低,如何提高信息的自动分类管理水平,从海量数据中高效、准确、快速获取有价值的信息与知识成为智慧图书馆亟待研究与解决的问题。文章提出了在数字图书馆服务中运用新型文本聚类群智能分析方法。该算法通过改进文本间的语义相似度计算,融合K-means聚类算法与蚁群聚类算法(Ant Colony Optimization,ACO)的优点,在初始分类时将K-means聚类算法用作快速分类,用分类结果指导更新蚂蚁各途径信息素,指导蚂蚁后续聚类途径选择,提高聚类运行效率。该分析方法因为不需要类别的信息,能自动完成文本分组,所以可以更好地应用到图书馆资源的推荐与检索服务中。图书馆数字文本数据库实验证明,混合蚁群聚类算法比单独的K-means、ACO都具有更好的聚类效果,可以看出该算法的有效性。展开更多
文摘对于小电流接地系统的单相接地故障选线,传统方法普遍采用基于一维信号的选线模型,存在选线准确率低、抗噪性弱等问题。为此提出一种改进的变分模态分解及Conv Ne Xt的小电流接地系统单相接地故障选线方法。首先引入蚁狮算法优化变分模态分解算法,通过蚁狮算法自动寻优选取合适的分解次数和惩罚因子,计算分解得到的各分量的分布熵,将其中的噪声分量筛选去除,将其余有效分量进行线性重构得到降噪后的零序电流信号;其次,将经过降噪处理后的一维零序电流信号经格拉姆角场转换为二维图像,制备故障选线数据集;然后,引入预训练的ConvNeXt模型,根据该研究数据模型特征,在其已有权重基础上对模型参数进行对应微调,从而提高模型精度并形成最终的选线模型;最后引入绝对平均误差、均方根误差作为评价指标验证所提降噪算法有效性。分别在加入噪声与否的前提下,将所提模型与3种选线模型相比较。实验结果表明该模型的准确率最高、抗噪性方面更好,其中该研究算法准确率达到了99.82%并且在不同噪声条件下都能维持91%以上的准确率,高于其他选线模型,克服了传统故障选线方法准确率低、抗噪性差的问题。