Human fall detection(FD)acts as an important part in creating sensor based alarm system,enabling physical therapists to minimize the effect of fall events and save human lives.Generally,elderly people suffer from seve...Human fall detection(FD)acts as an important part in creating sensor based alarm system,enabling physical therapists to minimize the effect of fall events and save human lives.Generally,elderly people suffer from several diseases,and fall action is a common situation which can occur at any time.In this view,this paper presents an Improved Archimedes Optimization Algorithm with Deep Learning Empowered Fall Detection(IAOA-DLFD)model to identify the fall/non-fall events.The proposed IAOA-DLFD technique comprises different levels of pre-processing to improve the input image quality.Besides,the IAOA with Capsule Network based feature extractor is derived to produce an optimal set of feature vectors.In addition,the IAOA uses to significantly boost the overall FD performance by optimal choice of CapsNet hyperparameters.Lastly,radial basis function(RBF)network is applied for determining the proper class labels of the test images.To showcase the enhanced performance of the IAOA-DLFD technique,a wide range of experiments are executed and the outcomes stated the enhanced detection outcome of the IAOA-DLFD approach over the recent methods with the accuracy of 0.997.展开更多
In this paper,we consider the NP-hard problem of finding the minimum dominant resolving set of graphs.A vertex set B of a connected graph G resolves G if every vertex of G is uniquely identified by its vector of dista...In this paper,we consider the NP-hard problem of finding the minimum dominant resolving set of graphs.A vertex set B of a connected graph G resolves G if every vertex of G is uniquely identified by its vector of distances to the vertices in B.A resolving set is dominating if every vertex of G that does not belong to B is a neighbor to some vertices in B.The dominant metric dimension of G is the cardinality number of the minimum dominant resolving set.The dominant metric dimension is computed by a binary version of the Archimedes optimization algorithm(BAOA).The objects of BAOA are binary encoded and used to represent which one of the vertices of the graph belongs to the dominant resolving set.The feasibility is enforced by repairing objects such that an additional vertex generated from vertices of G is added to B and this repairing process is iterated until B becomes the dominant resolving set.This is the first attempt to determine the dominant metric dimension problem heuristically.The proposed BAOA is compared to binary whale optimization(BWOA)and binary particle optimization(BPSO)algorithms.Computational results confirm the superiority of the BAOA for computing the dominant metric dimension.展开更多
高压充油电缆终端的可靠运行是电缆线路稳定运行的前提,但传统充油电缆终端故障诊断模型存在效率低、可靠性差等问题。为准确判断充油电缆终端故障,提出一种最大互信息系数(maximal information coefficient,MIC)结合改进阿基米德算法(i...高压充油电缆终端的可靠运行是电缆线路稳定运行的前提,但传统充油电缆终端故障诊断模型存在效率低、可靠性差等问题。为准确判断充油电缆终端故障,提出一种最大互信息系数(maximal information coefficient,MIC)结合改进阿基米德算法(improved Archimedes optimization algorithm,IAOA)优化深度置信网络(deep belief network,DBN)的充油电缆终端故障诊断方法。首先,采用MIC理论对电缆终端用硅油中溶解气体浓度的特征量进行降维处理并提取特征量;其次,将优选的特征量作为DBN网络模型的输入,并针对DBN网络超参数选取困难的缺点,提出采用IAOA优化DBN网络模型的超参数;再者,针对AOA算法容易陷入局部最优和搜索能力差等不足,引入多种改进策略优化AOA的方法提高AOA的寻优能力。最后,通过搭建充油电缆终端故障模拟实验平台,收集充油电缆终端故障样本数据并创建类别样本标签,验证了该模型的可行性。实例表明,所提出的诊断方法可以较好地完成故障诊断,测试集的准确率为98.33%。与传统故障诊断模型相比,该方法稳定性好、识别精度高,可为保障高压充油电缆终端的可靠运行提供理论基础。展开更多
基金supported by Taif University Researchers Supporting Program(Project Number:TURSP-2020/195),Taif University,Saudi ArabiaThe authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work under Grant Number(RGP 2/209/42)Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2022R234),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘Human fall detection(FD)acts as an important part in creating sensor based alarm system,enabling physical therapists to minimize the effect of fall events and save human lives.Generally,elderly people suffer from several diseases,and fall action is a common situation which can occur at any time.In this view,this paper presents an Improved Archimedes Optimization Algorithm with Deep Learning Empowered Fall Detection(IAOA-DLFD)model to identify the fall/non-fall events.The proposed IAOA-DLFD technique comprises different levels of pre-processing to improve the input image quality.Besides,the IAOA with Capsule Network based feature extractor is derived to produce an optimal set of feature vectors.In addition,the IAOA uses to significantly boost the overall FD performance by optimal choice of CapsNet hyperparameters.Lastly,radial basis function(RBF)network is applied for determining the proper class labels of the test images.To showcase the enhanced performance of the IAOA-DLFD technique,a wide range of experiments are executed and the outcomes stated the enhanced detection outcome of the IAOA-DLFD approach over the recent methods with the accuracy of 0.997.
文摘In this paper,we consider the NP-hard problem of finding the minimum dominant resolving set of graphs.A vertex set B of a connected graph G resolves G if every vertex of G is uniquely identified by its vector of distances to the vertices in B.A resolving set is dominating if every vertex of G that does not belong to B is a neighbor to some vertices in B.The dominant metric dimension of G is the cardinality number of the minimum dominant resolving set.The dominant metric dimension is computed by a binary version of the Archimedes optimization algorithm(BAOA).The objects of BAOA are binary encoded and used to represent which one of the vertices of the graph belongs to the dominant resolving set.The feasibility is enforced by repairing objects such that an additional vertex generated from vertices of G is added to B and this repairing process is iterated until B becomes the dominant resolving set.This is the first attempt to determine the dominant metric dimension problem heuristically.The proposed BAOA is compared to binary whale optimization(BWOA)and binary particle optimization(BPSO)algorithms.Computational results confirm the superiority of the BAOA for computing the dominant metric dimension.