期刊文献+
共找到183篇文章
< 1 2 10 >
每页显示 20 50 100
Soft measurement model of ring's dimensions for vertical hot ring rolling process using neural networks optimized by genetic algorithm 被引量:2
1
作者 汪小凯 华林 +3 位作者 汪晓旋 梅雪松 朱乾浩 戴玉同 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第1期17-29,共13页
Vertical hot ring rolling(VHRR) process has the characteristics of nonlinearity,time-variation and being susceptible to disturbance.Furthermore,the ring's growth is quite fast within a short time,and the rolled ri... Vertical hot ring rolling(VHRR) process has the characteristics of nonlinearity,time-variation and being susceptible to disturbance.Furthermore,the ring's growth is quite fast within a short time,and the rolled ring's position is asymmetrical.All of these cause that the ring's dimensions cannot be measured directly.Through analyzing the relationships among the dimensions of ring blanks,the positions of rolls and the ring's inner and outer diameter,the soft measurement model of ring's dimensions is established based on the radial basis function neural network(RBFNN).A mass of data samples are obtained from VHRR finite element(FE) simulations to train and test the soft measurement NN model,and the model's structure parameters are deduced and optimized by genetic algorithm(GA).Finally,the soft measurement system of ring's dimensions is established and validated by the VHRR experiments.The ring's dimensions were measured artificially and calculated by the soft measurement NN model.The results show that the calculation values of GA-RBFNN model are close to the artificial measurement data.In addition,the calculation accuracy of GA-RBFNN model is higher than that of RBFNN model.The research results suggest that the soft measurement NN model has high precision and flexibility.The research can provide practical methods and theoretical guidance for the accurate measurement of VHRR process. 展开更多
关键词 vertical hot ring rolling dimension precision soft measurement model artificial neural network genetic algorithm
在线阅读 下载PDF
Application of Neural Network in Fault Location of Optical Transport Network 被引量:5
2
作者 Tianyang Liu Haoyuan Mei +1 位作者 Qiang Sun Huachun Zhou 《China Communications》 SCIE CSCD 2019年第10期214-225,共12页
Due to the increasing variety of information and services carried by optical networks, the survivability of network becomes an important problem in current research. The fault location of OTN is of great significance ... Due to the increasing variety of information and services carried by optical networks, the survivability of network becomes an important problem in current research. The fault location of OTN is of great significance for studying the survivability of optical networks. Firstly, a three-channel network model is established and analyzing common alarm data, the fault monitoring points and common fault points are carried out. The artificial neural network is introduced into the fault location field of OTN and it is used to judge whether the possible fault point exists or not. But one of the obvious limitations of general neural networks is that they receive a fixedsize vector as input and produce a fixed-size vector as the output. Not only that, these models is even fixed for mapping operations (for example, the number of layers in the model). The difference between the recurrent neural network and general neural networks is that it can operate on the sequence. In spite of the fact that the gradient disappears and the gradient explodes still exist in the neural network, the method of gradient shearing or weight regularization is adopted to solve this problem, and choose the LSTM (long-short term memory networks) to locate the fault. The output uses the concept of membership degree of fuzzy theory to express the possible fault point with the probability from 0 to 1. Priority is given to the treatment of fault points with high probability. The concept of F-Measure is also introduced, and the positioning effect is measured by using location time, MSE and F-Measure. The experiment shows that both LSTM and BP neural network can locate the fault of optical transport network well, but the overall effect of LSTM is better. The localization time of LSTM is shorter than that of BP neural network, and the F1-score of LSTM can reach 0.961566888396156 after 45 iterations, which meets the accuracy and real-time requirements of fault location. Therefore, it has good application prospect and practical value to introduce neural network into the fault location field of optical transport network. 展开更多
关键词 optical transport networks failure localization artificial neural network longshort TERM memory network BP neural network F1-Measure
在线阅读 下载PDF
Evaluation Strategies for Coupled GC-IMS Measurement including the Systematic Use of Parametrized ANN
3
作者 Artur Scheinemann Stefanie Sielemann +1 位作者 Jorg Walter Theodor Doll 《Open Journal of Applied Sciences》 2012年第4期257-266,共10页
Data evaluation strategies for the novel coupled MCC-IMS sensory system are developed. Mayor attention to the plausibility of applied procedures and the feasibility of automation was paid. Three stages of extraction l... Data evaluation strategies for the novel coupled MCC-IMS sensory system are developed. Mayor attention to the plausibility of applied procedures and the feasibility of automation was paid. Three stages of extraction levels with increasing data reduction are presented for several fields of application. According to suitable extraction levels, real data were tested on various structures of artificial neural networks (ANN) with the result, that the computational levels must still be chosen by expertise, but subsequent processing and training can be fully automated. For the training of larger net- works a method of automated generation of secondary training data is presented which exceeds the quality of previous noise models by far. It is concluded that the combination of MCC-IMS as measuring instrument and ANNs as evalua- tion technique have high potential for industrial use in process monitoring. 展开更多
关键词 Gas CHROMATOGRAPHY Ion Mobility SPECTROMETRY GC-IMS MCC-IMS artificial neural network measurement EVALUATIon
在线阅读 下载PDF
Angle Measurement Based on Second Harmonic Generation Using Artificial Neural Network 被引量:1
4
作者 Kuangyi Li Zhiyang Zhang +3 位作者 Jiahui Lin Ryo Sato Hiraku Matsukuma Wei Gao 《Nanomanufacturing and Metrology》 EI 2023年第4期1-15,共15页
This article proposed an angle measurement method based on second harmonic generation(SHG)using an artifcial neural network(ANN).The method comprises three sequential parts:SHG spectrum collection,data preprocessing,a... This article proposed an angle measurement method based on second harmonic generation(SHG)using an artifcial neural network(ANN).The method comprises three sequential parts:SHG spectrum collection,data preprocessing,and neural network training.First,the referenced angles and SHG spectrums are collected by the autocollimator and SHG-based angle sensor,respectively,for training.The mapping is learned by the trained ANN after completing the training process,which solves the inverse problem of obtaining the angle from the SHG spectrum.Then,the feasibility of the proposed method is verifed in multiple-peak Maker fringe and single-peak phase-matching areas,with an overall angle measurement range exceeding 20,000 arcseconds.The predicted angles by ANN are compared with the autocollimator to evaluate the measure-ment performance in all the angular ranges.Particularly,a sub-arcsecond level of accuracy and resolution is achieved in the phase-matching area. 展开更多
关键词 Angle measurement Second harmonic generation Artifcial neural network Femtosecond laser
原文传递
Neural network-based estimation of lower limb joint kinematics:A minimally intrusive approach for gait analysis
5
作者 Farid Kenas Nadia Saadia +3 位作者 Amina Ababou Noureddine Ababou Mahdi Zabat Karim BenSiSaid 《Medicine in Novel Technology and Devices》 2024年第3期81-97,共17页
The establishment of a quantitative gait analysis system holds paramount importance,particularly in the context of functional rehabilitation of the lower limbs.Clinicians emphasize the imperative for sensors to be por... The establishment of a quantitative gait analysis system holds paramount importance,particularly in the context of functional rehabilitation of the lower limbs.Clinicians emphasize the imperative for sensors to be portable,compact,integrated,and non-intrusive,crucial characteristics in the rehabilitation field to facilitate their use and ensure optimal integration into care protocols.This study investigates an innovative approach aimed at reducing the reliance on body-fixed sensors by harnessing their data within a neural network,thus concentrating on the joint kinematics of the lower limbs.The primary objective is to estimate the flexion-extension angles of the hip,knee,and ankle during walking,utilizing data collected by two sensors positioned on the subject's legs.Initially,the neural network undergoes training with calculated data(leg tilt angles and angular velocities)sourced from the OpenSim database,followed by further refinement with experimental data obtained from a subject walking on a treadmill,wherein leg tilt angles and angular velocities are measured.The significance of this research is underscored by the demonstrated capability,through conducted tests,of the implemented networks to efficiently fuse data from a minimal set of sensors.Consequently,the proposed approach emerges as both practical and minimally intrusive,facilitating a robust evaluation of gait kinematic parameters. 展开更多
关键词 artificial neural network Joint angle Inertial measurement unit Kinematic gait analysis TREADMILL
原文传递
Modified Self-adaptive Immune Genetic Algorithm for Optimization of Combustion Side Reaction of p-Xylene Oxidation 被引量:1
6
作者 陶莉莉 孔祥东 +1 位作者 钟伟民 钱锋 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2012年第6期1047-1052,共6页
In recent years, immune genetic algorithm (IGA) is gaining popularity for finding the optimal solution for non-linear optimization problems in many engineering applications. However, IGA with deterministic mutation fa... In recent years, immune genetic algorithm (IGA) is gaining popularity for finding the optimal solution for non-linear optimization problems in many engineering applications. However, IGA with deterministic mutation factor suffers from the problem of premature convergence. In this study, a modified self-adaptive immune genetic algorithm (MSIGA) with two memory bases, in which immune concepts are applied to determine the mutation parameters, is proposed to improve the searching ability of the algorithm and maintain population diversity. Performance comparisons with other well-known population-based iterative algorithms show that the proposed method converges quickly to the global optimum and overcomes premature problem. This algorithm is applied to optimize a feed forward neural network to measure the content of products in the combustion side reaction of p-xylene oxidation, and satisfactory results are obtained. 展开更多
关键词 self-adaptive immune genetic algorithm artificial neural network measurement p-xylene oxidation process
在线阅读 下载PDF
Numerical Computation of SEIR Model for the Zika Virus Spreading
7
作者 Suthep Suantai Zulqurnain Sabir +1 位作者 Muhammad Asif Zahoor Raja Watcharaporn Cholamjiak 《Computers, Materials & Continua》 SCIE EI 2023年第4期2155-2170,共16页
The purpose of this study is to present the numerical performancesand interpretations of the SEIR nonlinear system based on the Zika virusspreading by using the stochastic neural networks based intelligent computingso... The purpose of this study is to present the numerical performancesand interpretations of the SEIR nonlinear system based on the Zika virusspreading by using the stochastic neural networks based intelligent computingsolver. The epidemic form of the nonlinear system represents the four dynamicsof the patients, susceptible patients S(y), exposed patients hospitalized inhospital E(y), infected patients I(y), and recovered patients R(y), i.e., SEIRmodel. The computing numerical outcomes and performances of the systemare examined by using the artificial neural networks (ANNs) and the scaledconjugate gradient (SCG) for the training of the networks, i.e., ANNs-SCG.The correctness of the ANNs-SCG scheme is observed by comparing theproposed and reference solutions for three cases of the SEIR model to solvethe nonlinear system based on the Zika virus spreading dynamics throughthe knacks of ANNs-SCG procedure based on exhaustive experimentations.The outcomes of the ANNs-SCG algorithm are found consistently in goodagreement with standard numerical solutions with negligible errors. Moreover,the procedure’s constancy, dependability, and exactness are perceived by usingthe values of state transitions, error histogram measures, correlation, andregression analysis. 展开更多
关键词 SEIR nonlinear system Zika virus artificial neural networks scaled conjugate gradient statistical measures
在线阅读 下载PDF
ANN model of subdivision error based on genetic algorithm
8
作者 齐明 邹继斌 尚静 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2010年第1期131-136,共6页
According to the test data of subdivision errors in the measuring cycle of angular measuring system, the characteristics of subdivision errors generated by this system are analyzed. It is found that the subdivision er... According to the test data of subdivision errors in the measuring cycle of angular measuring system, the characteristics of subdivision errors generated by this system are analyzed. It is found that the subdivision errors are mainly due to the rotary-type inductosyn itself. For the characteristic of cyclical change, the subdivision errors in other measuring cycles can be compensated by the subdivision error model in one measuring cycle. Using the measured error data as training samples, combining GA and BP algorithm, an ANN model of subdivision error is designed. Simulation results indicate that GA reduces the uncertainty in the training process of the ANN model, and enhances the generalization of the model. Compared with the error model based on the least-mean-squared method, the designed ANN model of subdivision errors can achieve higher compensating precision. 展开更多
关键词 genetic algorithm artificial neural network (ANN) subdivision error angular measuring system error model
在线阅读 下载PDF
基于稀疏量测的海上风电场集电线路故障选线方法研究
9
作者 王晓东 吴家豪 +1 位作者 高兴 刘颖明 《太阳能学报》 CSCD 北大核心 2024年第12期243-249,共7页
针对海上风电场多分支集电线路故障定位大都依赖于多测点的问题,提出一种基于卷积神经网络(CNN)的集电线路故障选线方法,基于稀疏量测利用局部连接实现集电线路故障选线。该方法以少量节点电流信号作为特征量,建立以稀疏样本的CNN初始... 针对海上风电场多分支集电线路故障定位大都依赖于多测点的问题,提出一种基于卷积神经网络(CNN)的集电线路故障选线方法,基于稀疏量测利用局部连接实现集电线路故障选线。该方法以少量节点电流信号作为特征量,建立以稀疏样本的CNN初始网络损失最小为目标的量测位置优化模型,利用离散二进制粒子群(BPSO)算法进行模型求解得出最优量测位置。算例分析表明,所提方法可在稀疏量测下以较高精度实现故障选线,对采样频率要求较低,不受故障起始角、故障电阻、故障位置等因素的影响,且对量测噪声具有较好的鲁棒性。 展开更多
关键词 海上风电场 集电线路 卷积神经网络 离散二进制粒子群优化算法 故障选线 量测位置
在线阅读 下载PDF
基于实测数据融合的堆芯物理模型反演优化方法及工业验证研究 被引量:1
10
作者 郭林 张凯 +1 位作者 万承辉 吴宏春 《原子能科学技术》 EI CAS CSCD 北大核心 2024年第7期1432-1439,共8页
由于堆芯运行过程中的组件辐照生长、冷却剂高速冲击等因素,燃料组件不可避免地会出现弯曲现象。但机组运行期间无法直接测量燃料组件弯曲状态,导致数值模拟采用的堆芯物理模型与真实堆芯状态之间存在差异,直观上表现为堆芯功率分布的... 由于堆芯运行过程中的组件辐照生长、冷却剂高速冲击等因素,燃料组件不可避免地会出现弯曲现象。但机组运行期间无法直接测量燃料组件弯曲状态,导致数值模拟采用的堆芯物理模型与真实堆芯状态之间存在差异,直观上表现为堆芯功率分布的计算值与实测值存在显著误差。为了提高数值模拟精度,本文开展了基于实测数据融合的堆芯物理模型反演优化方法研究:采用人工神经网络算法,通过大量样本训练建立堆芯物理模型与实测数据物理场之间的显式函数关系;基于三维变分算法和实测数据物理场,建立物理模型反演优化代价函数,通过实测数据反演优化得到与真实状态更为接近的堆芯物理模型。为了实现方法验证,本文利用国内某商用压水堆核电厂的功率分布实测数据对堆芯燃料组件弯曲实现了反演优化。数值结果表明:采用反演优化得到的堆芯物理模型,可将堆芯功率分布计算误差的最大值由13.4%降至7.7%,显著提升了堆芯数值模拟结果的精度。因此,本文提出的基于实测数据融合的堆芯物理模型反演优化方法能够显著提高堆芯数值模拟的精度,在核反应堆数字孪生技术研发中具有重要的应用价值。 展开更多
关键词 实测数据融合 模型反演优化 三维变分算法 人工神经网络算法
在线阅读 下载PDF
基于GA优化BP神经网络的小电流接地故障选线方法 被引量:3
11
作者 徐思旸 范剑英 丁强 《电测与仪表》 北大核心 2024年第1期183-188,共6页
将GA优化BP神经网络的算法引入到小电流接地故障选线方法中。文中基于MATLAB进行仿真试验,通过小波包法、五次谐波法、基波比幅比相法及零序有功功率法等传统选线方法,将零序电流信号的各种特征量进行提取,经过故障测度函数计算得到故... 将GA优化BP神经网络的算法引入到小电流接地故障选线方法中。文中基于MATLAB进行仿真试验,通过小波包法、五次谐波法、基波比幅比相法及零序有功功率法等传统选线方法,将零序电流信号的各种特征量进行提取,经过故障测度函数计算得到故障测度数据,将数据分别输入到GA-BP神经网络与单一BP神经网络进行训练和测试,讨论GA-BP神经网络算法与单一BP神经网络算法选线性能的差异,输出故障选线结果并与基于各选线方法的故障测度数据进行对比。结果表明,综合多种传统选线方法的GA-BP神经网络准确率明显高于传统选线方法,且其选线速度与精度优于单一BP神经网络,能够更快速、有效地进行故障选线,满足配电网故障选线要求。 展开更多
关键词 遗传算法 故障选线 BP神经网络 故障测度
在线阅读 下载PDF
基于振动信号的推移质输沙率监测研究
12
作者 吴小康 罗铭 +2 位作者 刘兴年 黄尔 陈政 《泥沙研究》 CAS CSCD 北大核心 2024年第2期1-8,共8页
推移质输沙率精确测量是河流动力学的研究难点之一,传统的推移质直接测量方法受限于推移质运动的复杂性和测量仪器的局限性,无法对推移质进行长时间的连续监测。为了连续监测推移质运动,采用推移质间接测量方法,利用安装振动传感器的冲... 推移质输沙率精确测量是河流动力学的研究难点之一,传统的推移质直接测量方法受限于推移质运动的复杂性和测量仪器的局限性,无法对推移质进行长时间的连续监测。为了连续监测推移质运动,采用推移质间接测量方法,利用安装振动传感器的冲击板系统对推移质运动产生的振动信号进行高分辨率采集,提取振动信号特征值,并建立与推移质输沙率及流量之间的关系,进一步采用人工神经网络算法对推移质输沙率进行有效预测。结果表明:推移质振动信号的特征值均值与推移质输沙率有良好的相关性;中等流量条件的神经网络预测效果最佳,小流量条件的预测效果次之,大流量条件的预测效果相对较差,且其最优输入参数与流量及河床变化均有关系。 展开更多
关键词 振动信号 推移质输沙率 间接测量法 人工神经网络
在线阅读 下载PDF
基于激光诱导击穿光谱的瞬态温度测量方法
13
作者 廖文龙 李哲 +2 位作者 杨玥坪 唐博 魏文赋 《电力工程技术》 北大核心 2024年第4期202-207,共6页
温度是影响材料力学性能的重要因素之一,准确测量器件温度是认识材料在应力作用下其力学性能演变以及评估设备健康状态和寿命的重要方式。面向功率器件开关过程中焊接界面快速温变测量的需求,传统方法存在时间分辨能力不足、难以测量瞬... 温度是影响材料力学性能的重要因素之一,准确测量器件温度是认识材料在应力作用下其力学性能演变以及评估设备健康状态和寿命的重要方式。面向功率器件开关过程中焊接界面快速温变测量的需求,传统方法存在时间分辨能力不足、难以测量瞬态温度的问题。文中基于激光诱导元素特征谱线强度与温度的密切相关性,提出了一种微秒量级时间分辨能力的表面温度测量方法,并建立了样品表面温度与光谱特性之间的定量关系。研究结果表明,物质表面温度提升导致激光诱导等离子体光谱强度和信噪比增强,且增强效果受到光谱采集延时和门宽影响。采用反向传播-人工神经网络(back propagation-artificial neural network,BP-ANN)和偏最小二乘(partial least squares,PLS)法对表面温度与光谱特性关系定量拟合并校准,拟合模型线性相关性拟合度指标均大于0.99。BP-ANN拟合模型的拟合偏差更小,其均方根误差(root mean squared error,RMSE)为2.582,正确率为98.3%。该方法为物体瞬态温度测量提供了一种有效手段,对功率器件焊接界面健康状态的评估给予了有力支撑。 展开更多
关键词 激光诱导击穿光谱 温度测量 主成分分析 时间分辨 偏最小二乘(PLS) 反向传播-人工神经网络(BP-ANN)
在线阅读 下载PDF
考虑测量不确定性的ANN-Wiener过程加速退化试验评估
14
作者 李小璐 锁斌 《探测与控制学报》 CSCD 北大核心 2024年第5期87-92,98,共7页
考虑加速退化试验过程中关键性能参数的测量不确定性,将测量不确定性处理为区间数,并建立一种结合人工神经网络与Wiener过程的区间加速退化数据可靠性评估方法。基于ANN-Wiener过程构建加速退化数据的负对数似然函数,采用遗传算法建立... 考虑加速退化试验过程中关键性能参数的测量不确定性,将测量不确定性处理为区间数,并建立一种结合人工神经网络与Wiener过程的区间加速退化数据可靠性评估方法。基于ANN-Wiener过程构建加速退化数据的负对数似然函数,采用遗传算法建立负对数似然函数未知参数的求解方法,最终实现了区间加速退化试验的可靠性评估。通过激光器的加速退化试验,对该方法进行验证,比较该方法与其他方法评估得到的可靠度和真实可靠度的绝对误差,结果表明,基于ANN-Wiener过程对可靠度的评估结果更准确,且考虑到测量不确定性因素的影响,得到激光器可靠度的保守和乐观估计。相同可靠度的情况下,忽略测量不确定性时的评估时间晚于保守估计的评估时间,会导致产品预防维护时机的推迟,增大产品运行过程中的失效风险,增加因产品失效而造成的损失。 展开更多
关键词 加速退化试验 WIENER过程 测量不确定性 人工神经网络 遗传算法
在线阅读 下载PDF
基于神经网络的排水管道破损诱发地陷风险评价
15
作者 唐洋博 黄标 +1 位作者 李玮 管梦林 《人民长江》 北大核心 2024年第8期133-138,共6页
城市地面塌陷威胁居民生命财产安全,为甄别地面塌陷影响因素、筛查风险区域、减少潜在损失,建立了地面塌陷风险评价方法。以衡阳市为例,收集整理了排水管网基础数据,采用人工神经网络算法预测管网破损尺寸,并通过逻辑回归算法预测管网... 城市地面塌陷威胁居民生命财产安全,为甄别地面塌陷影响因素、筛查风险区域、减少潜在损失,建立了地面塌陷风险评价方法。以衡阳市为例,收集整理了排水管网基础数据,采用人工神经网络算法预测管网破损尺寸,并通过逻辑回归算法预测管网管周地面塌陷风险发生率。结果表明:人工神经网络模型训练集预测值与真实值的平均方差为0.026,逻辑回归模型预测的地面塌陷风险与管道破损位置高度相关;衡阳市城西排水分区及酃湖排水分区地面塌陷发生率高,地面塌陷诱因包括管道破损、路面荷载、极端降雨、高速水流等。研究成果可为长江中游城市管网管周地面塌陷的防治工作提供科学依据。 展开更多
关键词 排水管道 管网破损 地面塌陷 人工神经网络 预防措施 城市排水系统 衡阳市
在线阅读 下载PDF
人工智能在北方铁路口岸木材材积测量中的应用测试研究
16
作者 刘磊 左鹏 +1 位作者 刘韬 张义 《对外经贸》 2024年第4期81-84,共4页
随着深度学习的开放,人工智能在近几年得到了快速发展。满洲里海关运用人工智能技术升级改造了铁路口岸木材材积测量系统。此套系统在满洲里铁路口岸原有木材材积测量系统的基础上,引入人工智能技术,采用深度卷积神经网络,实现对木材材... 随着深度学习的开放,人工智能在近几年得到了快速发展。满洲里海关运用人工智能技术升级改造了铁路口岸木材材积测量系统。此套系统在满洲里铁路口岸原有木材材积测量系统的基础上,引入人工智能技术,采用深度卷积神经网络,实现对木材材积智能、快速、准确识别。研究结果表明,人工智能技术在北方铁路口岸木材材积测量系统中具有广泛的应用前景,可有效降低人工误差及劳动强度,避免作业风险,为北方铁路口岸海关查验作业提质增效提供了科技装备创新的探索方向。 展开更多
关键词 木材材积测量 人工智能 卷积神经网络 海关监管
在线阅读 下载PDF
基于优选地震强度参数的地下倒虹吸结构易损性分析
17
作者 段朝杰 陈荣国 +3 位作者 石艳柯 王智磊 门文博 何志佳 《水力发电》 CAS 2024年第8期28-37,共10页
对水工建筑进行地震易损性分析是研究其抗震性能的有效途径。相比渡槽、大坝等地上水工结构,地下倒虹吸结构的地震易损性研究相对较少。为此,以滇中引水下庄地下倒虹吸结构为研究对象,选取16个标量地震动强度参数,使用IDA法对地下倒虹... 对水工建筑进行地震易损性分析是研究其抗震性能的有效途径。相比渡槽、大坝等地上水工结构,地下倒虹吸结构的地震易损性研究相对较少。为此,以滇中引水下庄地下倒虹吸结构为研究对象,选取16个标量地震动强度参数,使用IDA法对地下倒虹吸结构开展了土体-结构动力非线性有限元分析。以有效性、实用性、效益性和相关性这4个参数作为评价指标,优选标量IM构建矢量IMs;利用遗传算法(Genetic algorithms,GA)优化多层前馈(Back propagation,BP)神经网络建立了GA-BP神经网络,以优选矢量IMs作为输入进行训练,通过训练后的神经网络建立了地下倒虹吸结构的易损性曲面。研究结果表明:优选构建的矢量IMs能够更好地反映地下倒虹吸结构的抗震性能,可以降低地震易损性分析70%的计算成本。 展开更多
关键词 地下倒虹吸 易损性分析 地震强度参数 人工神经网络 遗传算法
在线阅读 下载PDF
人工神经网络在污水处理中的应用探讨
18
作者 管少华 《工程建设与设计》 2024年第24期109-111,共3页
介绍了人工神经网络的应用原理,分析了ANN在污水处理领域的应用进展,综述了人工神经网络在污水处理领域的模拟控制、软测量、优化运行等方向的研究动态,指明了人工神经网络在污水处理今后研究方向。
关键词 污水处理 人工神经网络 建模 预测 软测量
在线阅读 下载PDF
人工神经网络在电力设备红外测温中的应用研究
19
作者 赵李强 张少杰 +5 位作者 周静波 陈国坤 焦宗寒 杨伟 王欣 刘荣海 《云南电力技术》 2024年第2期49-53,共5页
变电站中电力设备发热会对电网运行造成很大隐患,极大地降低电能质量和供电可靠性,因此有必要在变电站常规巡检中监测变压器、高压开关柜、绝缘子、导线接触点的温度,以确保变电站电气设备正常稳定运行。传统的变电站温度采集方式极为... 变电站中电力设备发热会对电网运行造成很大隐患,极大地降低电能质量和供电可靠性,因此有必要在变电站常规巡检中监测变压器、高压开关柜、绝缘子、导线接触点的温度,以确保变电站电气设备正常稳定运行。传统的变电站温度采集方式极为费时、费力,并且由于相间及相地电压非常高,使得传统测温方法对人员的安全也有很大的威胁,而且也容易误检、漏检,容易造成人员和资源的浪费。针对这此现象开展无人机巡检红外照片自动测温是保障电气设备稳定运行的有效措施,如何快速且自动地识别无人机红外巡检照片中的设备温度异常点是一个亟待解决的问题。本文提出一种通过人工神经网络近似红外图像像素RGB值到摄氏温度值映射关系的方法,该方法将红外图像像素点的RGB值作为人工神经网络的输入,网络的输出为摄氏温度值。我们使用变电站常规巡检中获取的红外图像为数据源,对具有三个隐藏层的全连接人工神经网络进行训练,测试结果显示该人工神经网络对塔材和绝缘子的拟合程度较好偏差值小于1℃,对树木和天空的拟合能力较差偏差大于1℃。 展开更多
关键词 变电站巡检 红外测温 近似定理 人工神经网络 多层神经网络拟合
在线阅读 下载PDF
矿用本安型电磁铁吸力特性测试系统设计
20
作者 贾少毅 《煤矿机电》 2024年第6期80-84,共5页
目前矿用本安型电磁铁吸力特性测试中采用手动方式调节气隙,无法自动完成全行程的力-位移测试,只能靠描点生成精度较差的力-位移特性曲线。利用电动缸调节气隙的方式,实现了电磁铁全行程的力-位移特性测试,并自动生成滞环曲线。测试程... 目前矿用本安型电磁铁吸力特性测试中采用手动方式调节气隙,无法自动完成全行程的力-位移测试,只能靠描点生成精度较差的力-位移特性曲线。利用电动缸调节气隙的方式,实现了电磁铁全行程的力-位移特性测试,并自动生成滞环曲线。测试程序中利用力反馈和电动缸变速的自动寻零方法,既保护了力传感器,又提高了效率。最后利用测试结果建立矿用本安电磁铁神经网络模型,有助于参数优化后的性能预测,有效提高了矿用本安型电磁铁的研发效率。 展开更多
关键词 矿用本安型电磁铁 测控技术 吸力特性 人工神经网络
在线阅读 下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部