针对传统反向传播(back-propagation,BP)神经网络受初始权阈值影响大且易陷入局部极值,标准天牛须搜索算法局部搜索能力差、寻优精度低等问题,提出一种自适应步长因子的混沌天牛群算法用于优化BP神经网络分类模型。通过增加天牛种群,引...针对传统反向传播(back-propagation,BP)神经网络受初始权阈值影响大且易陷入局部极值,标准天牛须搜索算法局部搜索能力差、寻优精度低等问题,提出一种自适应步长因子的混沌天牛群算法用于优化BP神经网络分类模型。通过增加天牛种群,引入自适应步长更新策略优化天牛须搜索算法的局部搜索能力,使其跳出局部最优,提高算法的计算精度;利用Logistic混沌映射产生新个体,替换性能较差的个体,增强全局搜索效果。为了改善BP神经网络对非均衡数据集中少数类的分类效果,采用SMOTE算法处理非均衡数据集。将改进的天牛须搜索算法用于优化BP神经网络中的初始权值和阈值,建立改进的天牛须搜索及反向传播神经网络(improved beetle antennae search and back propagation neural network,IBAS-BPNN)分类模型,提高BP神经网络分类模型的准确率。为验证分类模型的性能,将改进的BP神经网络分类模型与其他6种典型的分类算法进行比较。实验结果表明:IBAS-BPNN分类模型的平均分类正确率高于其他算法。改进的混沌天牛群算法泛化能力强,鲁棒性好,具有一定的优越性。展开更多
文摘针对传统反向传播(back-propagation,BP)神经网络受初始权阈值影响大且易陷入局部极值,标准天牛须搜索算法局部搜索能力差、寻优精度低等问题,提出一种自适应步长因子的混沌天牛群算法用于优化BP神经网络分类模型。通过增加天牛种群,引入自适应步长更新策略优化天牛须搜索算法的局部搜索能力,使其跳出局部最优,提高算法的计算精度;利用Logistic混沌映射产生新个体,替换性能较差的个体,增强全局搜索效果。为了改善BP神经网络对非均衡数据集中少数类的分类效果,采用SMOTE算法处理非均衡数据集。将改进的天牛须搜索算法用于优化BP神经网络中的初始权值和阈值,建立改进的天牛须搜索及反向传播神经网络(improved beetle antennae search and back propagation neural network,IBAS-BPNN)分类模型,提高BP神经网络分类模型的准确率。为验证分类模型的性能,将改进的BP神经网络分类模型与其他6种典型的分类算法进行比较。实验结果表明:IBAS-BPNN分类模型的平均分类正确率高于其他算法。改进的混沌天牛群算法泛化能力强,鲁棒性好,具有一定的优越性。