期刊文献+
共找到24篇文章
< 1 2 >
每页显示 20 50 100
结合BERT语义融合和关键词特征提取的方面级情感分类研究
1
作者 胡耀庭 韩雨桥 +2 位作者 石宇航 高宣 彭玉青 《网络安全与数据治理》 2024年第11期29-36,共8页
方面级情感分类旨在确定句子中给定方面词的情感极性。该任务先前提出的方法无法提取语义信息丰富的上下文初始表示向量,同时也不能精确地捕获局部关键特征的范围。因此,提出了一种结合BERT语义融合(BERTSF)和关键词特征提取(KFE)的方... 方面级情感分类旨在确定句子中给定方面词的情感极性。该任务先前提出的方法无法提取语义信息丰富的上下文初始表示向量,同时也不能精确地捕获局部关键特征的范围。因此,提出了一种结合BERT语义融合(BERTSF)和关键词特征提取(KFE)的方面级情感分类模型(KFE-BERTSF)。BERTSF通过门控融合函数融合BERT编码器的高层语义信息,以提取语义信息更加丰富的上下文初始表示向量。KFE通过动态阈值划分句子的局部上下文和非局部上下文,并利用句法距离掩码(SDMask)和距离感知注意力(ADA)提取两个区域的局部关键特征。基于三个数据集上的实验结果表明,KFE-BERTSF取得了比基准模型更好的成绩。 展开更多
关键词 方面级情感分类 bert编码器 关键词特征 局部上下文聚焦
在线阅读 下载PDF
基于并联残差膨胀卷积网络的短文本实体关系联合抽取
2
作者 曾伟 奚雪峰 崔志明 《现代电子技术》 北大核心 2025年第2期169-178,共10页
关系抽取旨在从文本中提取出实体对之间存在的语义关系,但现有的关系抽取方法均存在关系冗余和重叠的不足,尤其是对于短文本,会因上下文信息不足而出现语义信息不足和噪声大等问题。此外,一般流水线式的关系抽取模型还存在误差传递问题... 关系抽取旨在从文本中提取出实体对之间存在的语义关系,但现有的关系抽取方法均存在关系冗余和重叠的不足,尤其是对于短文本,会因上下文信息不足而出现语义信息不足和噪声大等问题。此外,一般流水线式的关系抽取模型还存在误差传递问题。为此,文中提出一种基于并联残差膨胀卷积网络的短文本实体关系联合抽取方法。该方法利用BERT生成语义特征信息,采用并联残差膨胀卷积网络来捕获语义信息,从而提升上下文信息的捕获能力并缓解噪声。联合抽取框架通过抽取潜在关系来过滤无关关系,然后再抽取实体以预测三元组,从而解决关系冗余和重叠问题,并提高计算效率。实验结果表明,与现有的主流模型相比,所提模型在三个公共数据集NYT、WebNLG和DuIE上的F1值分别为90.9%、91.3%和73.5%,相较于基线模型均有提升,验证了该模型的有效性。 展开更多
关键词 实体关系抽取 短文本 残差膨胀卷积网络 语义特征 联合抽取 bert编码器
在线阅读 下载PDF
基于BERT-BiLSTM-CRF的隧道施工安全领域命名实体识别
3
作者 张念 周彩凤 +3 位作者 万飞 刘非 王耀耀 徐栋梁 《中国安全科学学报》 CSCD 北大核心 2024年第12期56-63,共8页
为解决隧道施工安全领域传统命名实体识别(NER)方法存在的实体边界模糊、小样本学习困难、特征信息提取不够全面准确等问题,提出一种基于变换器的双向编码器表征(BERT)-双向长短时记忆(BiLSTM)网络-条件随机场(CRF)模型的隧道施工事故... 为解决隧道施工安全领域传统命名实体识别(NER)方法存在的实体边界模糊、小样本学习困难、特征信息提取不够全面准确等问题,提出一种基于变换器的双向编码器表征(BERT)-双向长短时记忆(BiLSTM)网络-条件随机场(CRF)模型的隧道施工事故文本实体识别方法。首先,利用BERT模型将隧道施工事故文本编码得到蕴含语义特征的词向量;然后,将BERT模型训练后输出的词向量输入BiLSTM模型进一步获取隧道施工事故文本的上下文特征并进行标签概率预测;最后,利用CRF层的标注规则的约束,修正BiLSTM模型的输出结果,得到最大概率序列标注结果,从而实现对隧道施工事故文本标签的智能分类。将该模型与其他4种常用的传统NER模型在隧道施工安全事故语料数据集上进行对比试验,试验结果表明:BERT-BiLSTM-CRF模型的识别准确率、召回率和F 1值分别达到88%、89%和88%,实体识别效果优于其他基准模型。利用所建立的NER模型识别实际隧道施工事故文本中的实体,验证了其在隧道施工安全领域中的应用效果。 展开更多
关键词 变换器的双向编码器表征(bert) 双向长短时记忆(BiLSTM)网络 条件随机场(CRF) 隧道施工 安全领域 命名实体识别(NER) 深度学习
在线阅读 下载PDF
融合知识图谱与Bert+CNN的图书文本分类研究 被引量:1
4
作者 孔令蓉 迟呈英 战学刚 《电脑编程技巧与维护》 2023年第1期140-142,158,共4页
基于海量图书的分类需求,提出了一种融合知识图谱(Knowledge Graph, KG)与转换器双向编码器(Bidirectional Encoder Representation from Transformers, Bert)的图书文本分类模型。通过构建面向图书领域知识图谱扩展图书文本的语义信息... 基于海量图书的分类需求,提出了一种融合知识图谱(Knowledge Graph, KG)与转换器双向编码器(Bidirectional Encoder Representation from Transformers, Bert)的图书文本分类模型。通过构建面向图书领域知识图谱扩展图书文本的语义信息,并且使用深度学习的方法获取文本深层语义信息,将扩展语义信息与深层语义信息相结合后,通过TextCNN进行图书分类。经研究试验表明,融合知识图谱与深度学习的图书文本分类算法相对于只使用深度学习进行图书分类算法,前者的分类效果更佳。 展开更多
关键词 知识图谱 深度学习 bert编码器 CNN技术 图书分类
在线阅读 下载PDF
融合卷积收缩门控的生成式文本摘要方法 被引量:1
5
作者 甘陈敏 唐宏 +2 位作者 杨浩澜 刘小洁 刘杰 《计算机工程》 CAS CSCD 北大核心 2024年第2期98-104,共7页
在深度学习技术的推动下,基于编码器-解码器架构并结合注意力机制的序列到序列模型成为文本摘要研究中应用最广泛的模型之一,尤其在生成式文本摘要任务中取得显著效果。然而,现有的采用循环神经网络的模型存在并行能力不足和时效低下的... 在深度学习技术的推动下,基于编码器-解码器架构并结合注意力机制的序列到序列模型成为文本摘要研究中应用最广泛的模型之一,尤其在生成式文本摘要任务中取得显著效果。然而,现有的采用循环神经网络的模型存在并行能力不足和时效低下的局限性,无法充分概括有用信息,忽视单词与句子间的联系,易产生冗余重复或语义不相关的摘要。为此,提出一种基于Transformer和卷积收缩门控的文本摘要方法。利用BERT作为编码器,提取不同层次的文本表征得到上下文编码,采用卷积收缩门控单元调整编码权重,强化全局相关性,去除无用信息的干扰,过滤后得到最终的编码输出,并通过设计基础Transformer解码模块、共享编码器的解码模块和采用生成式预训练Transformer(GPT)的解码模块3种不同的解码器,加强编码器与解码器的关联,以此探索能生成高质量摘要的模型结构。在LCSTS和CNNDM数据集上的实验结果表明,相比主流基准模型,设计的TCSG、ES-TCSG和GPT-TCSG模型的评价分数增量均不低于1.0,验证了该方法的有效性和可行性。 展开更多
关键词 生成式文本摘要 序列到序列模型 Transformer模型 bert编码器 卷积收缩门控单元 码器
在线阅读 下载PDF
基于BERT的施工安全事故文本命名实体识别方法 被引量:1
6
作者 孙文涵 王俊杰 《电视技术》 2023年第1期20-26,共7页
为解决传统施工安全管理中对事故报告信息分析效率低的问题,利用自然语言处理(Natural Language Processing,NLP)技术,提出基于双向编码器表示(Bidirectional Encoder Representations from Transformers,BERT)的施工安全事故文本命名... 为解决传统施工安全管理中对事故报告信息分析效率低的问题,利用自然语言处理(Natural Language Processing,NLP)技术,提出基于双向编码器表示(Bidirectional Encoder Representations from Transformers,BERT)的施工安全事故文本命名实体识别方法。以自建的施工安全事故领域实体标注语料数据集为研究对象,首先利用BERT预训练模型获取动态字向量,然后采用双向长短时记忆网络-注意力机制-条件随机场(BiLSTM-Attention-CRF)对前一层输出的语义编码进行序列标注和解码以获取最优文本标签序列。实验结果表明,该模型在自建数据集上的F1值分数为92.58%,较基准模型BiLSTM-CRF提升了4.19%;该方法对事故时间等5类实体识别F1值均可达到91%以上,验证了该方法对施工安全事故实体识别的有效性,说明模型可用于实际施工知识管理中并指导建筑安全管理的安全培训。 展开更多
关键词 双向编码器表示(bert) 施工安全管理 命名实体识别 知识图谱 知识管理
在线阅读 下载PDF
基于BERT的灾害三元组信息抽取优化研究 被引量:7
7
作者 宋敦江 杨霖 钟少波 《中国安全科学学报》 CAS CSCD 北大核心 2022年第2期115-120,共6页
为从网络媒体文本中快速、准确提取灾害三元组信息,利用自然语言处理(NLP)技术,研究灾害三元组信息抽取应用及其算法优化。通过双向编码器表示(BERT)预训练语言模型,应用于地质灾害三元组信息提取的实例中,针对模型由于底层多头注意力(M... 为从网络媒体文本中快速、准确提取灾害三元组信息,利用自然语言处理(NLP)技术,研究灾害三元组信息抽取应用及其算法优化。通过双向编码器表示(BERT)预训练语言模型,应用于地质灾害三元组信息提取的实例中,针对模型由于底层多头注意力(MHA)机制会导致“低秩瓶颈”问题,对此,通过增大模型key-size对其进行优化。结果表明:所提方法能够显著提升从新闻报道等文本中提取地质灾害种类、发生地点、发生时间等关键信息的容错率及精准率;可得到对地质等灾害空间分布情况和趋势的分析,进而为预案编制、应急资源优化配置、区域监测预警等灾害应急管理工作提供科学分析和决策信息支持。 展开更多
关键词 然语言处理(NLP) 双向编码器表示(bert) 低秩瓶颈 多头注意力(MHA) 灾害信息
在线阅读 下载PDF
融合BERT的多层次语义协同模型情感分析研究 被引量:16
8
作者 胡任远 刘建华 +2 位作者 卜冠南 张冬阳 罗逸轩 《计算机工程与应用》 CSCD 北大核心 2021年第13期176-184,共9页
由于基于变换器的双向编码器表征技术(Bidirectional Encoder Representations from Transformers,BERT)的提出,改变了传统神经网络解决句子级文本情感分析问题的方法。目前的深度学习模型BERT本身学习模式为无监督学习,其需要依赖后续... 由于基于变换器的双向编码器表征技术(Bidirectional Encoder Representations from Transformers,BERT)的提出,改变了传统神经网络解决句子级文本情感分析问题的方法。目前的深度学习模型BERT本身学习模式为无监督学习,其需要依赖后续任务补全推理和决策环节,故存在缺乏目标领域知识的问题。提出一种多层协同卷积神经网络模型(Multi-level Convolutional Neural Network,MCNN),该模型能学习到不同层次的情感特征来补充领域知识,并且使用BERT预训练模型提供词向量,通过BERT学习能力的动态调整将句子真实的情感倾向嵌入模型,最后将不同层次模型输出的特征信息同双向长短期记忆网络输出信息进行特征融合后计算出最终的文本情感性向。实验结果表明即使在不同语种的语料中,该模型对比传统神经网络和近期提出的基于BERT深度学习的模型,情感极性分类的能力有明显提升。 展开更多
关键词 深度学习 文本情感分析 基于变换器的双向编码器表征技术(bert) 卷积神经网络(CNN) 协同结构
在线阅读 下载PDF
基于BERT模型的检验检测领域命名实体识别
9
作者 苏展鹏 李洋 +4 位作者 张婷婷 让冉 张龙波 蔡红珍 邢林林 《高技术通讯》 CAS 2022年第7期749-755,共7页
针对检验检测领域存在的实体语料匮乏、实体嵌套严重、实体类型冗杂繁多等问题,提出了一种结合双向编码器表示法(BERT)预处理语言模型、双向门控循环单元(BIGRU)双向轻编码模型和随机条件场(CRF)的命名实体识别方法。BERT-BIGRU-CRF(BGC... 针对检验检测领域存在的实体语料匮乏、实体嵌套严重、实体类型冗杂繁多等问题,提出了一种结合双向编码器表示法(BERT)预处理语言模型、双向门控循环单元(BIGRU)双向轻编码模型和随机条件场(CRF)的命名实体识别方法。BERT-BIGRU-CRF(BGC)模型首先利用BERT预处理模型结合上下文语义训练词向量;然后经过BIGRU层双向编码;最后在CRF层计算后输出最优结果。利用含有检测组织、检测项目、检测标准和检测仪器4种命名实体的检验检测领域数据集来训练模型,结果表明BGC模型的准确率、召回率和F1值都优于不加入BERT的对比模型。同时对比BERT-BILSTM-CRF模型,BGC模型在训练时间上缩短了6%。 展开更多
关键词 命名实体识别 双向编码器表示法(bert) 检验检测领域 深度学习 双向门控循环单元(BIGRU)
在线阅读 下载PDF
基于自监督对比学习与方面级情感分析的联合微调模型
10
作者 狄广义 陈见飞 +3 位作者 杨世军 高军 王耀坤 余本功 《科学技术与工程》 北大核心 2024年第21期9033-9042,共10页
方面级情感分析是自然语言处理领域中一项具有挑战性的细粒度情感分析任务。以微调预训练语言模型的方式广泛应用于方面级情感分析任务,并取得了明显的效果提升。然而,现有多数研究设计的下游结构较为复杂,甚至与预训练模型部分隐藏层... 方面级情感分析是自然语言处理领域中一项具有挑战性的细粒度情感分析任务。以微调预训练语言模型的方式广泛应用于方面级情感分析任务,并取得了明显的效果提升。然而,现有多数研究设计的下游结构较为复杂,甚至与预训练模型部分隐藏层结构重合,从而限制了整体模型性能。由于对比学习方法有助于改善预训练语言模型在词语级别和句子级别的表示,设计了一种结合自监督对比学习与方面级情感分析的联合微调模型(self-supervised contrastive learning aspect-based sentiment analysis,SSCL-ABSA)。该模型以简洁的下游结构联合两种学习任务,实现从不同角度微调预训练基于Transformer的双向编码器(bidirectional encoder representations from Transformers,BERT)模型,有效促进了方面级情感分析效果的提升。具体地,首先在BERT编码阶段,将评论文本与方面词拼接成两个片段输入BERT编码器,得到各词特征表示。之后根据下游结构需求,对不同的词特征采用池化操作。一方面池化所有词特征用于方面级情感分析,另一方面池化两个片段的方面词特征用于自监督对比学习。最终结合两种任务以联合学习的方式微调BERT编码器。在3个公开数据集上进行实验评估,结果表明SSCL-ABSA方法优于其他同类对比方法。借助t-分布随机近邻嵌入(t-distributed stochastic neighbor embedding,t-SNE)方法,形象地可视化了SSCL-ABSA有效改善了BERT模型的实体表示效果。 展开更多
关键词 方面级情感分析 自监督对比学习 预训练语言模型 bert编码器 联合微调
在线阅读 下载PDF
基于BERT的中文健康问句分类研究
11
作者 徐星昊 《电视技术》 2022年第3期67-70,共4页
现有的医学健康问句数据大多数都是短文本,但短文本存在特征稀疏的局限性。对此,提出一种融合特征的方法,首先通过基于变换器的双向编码器表征技术(Bidirectional Encoder Representations from Transformers,BERT)字符级特征的输出取... 现有的医学健康问句数据大多数都是短文本,但短文本存在特征稀疏的局限性。对此,提出一种融合特征的方法,首先通过基于变换器的双向编码器表征技术(Bidirectional Encoder Representations from Transformers,BERT)字符级特征的输出取平均并与BERT句子级特征的输出进行拼接,然后使用分类器进行分类。实验结果表明,本模型可以有效地提高模型提取特征的能力,在处理Kesci公众健康问句分类数据集上F1值达到83.92%,在处理中文健康公众问句数据集时F1值达到87%。 展开更多
关键词 基于变换器的双向编码器表征(bert) 健康问句 字符级特征 句子级特征
在线阅读 下载PDF
基于BERT模型的智能数据分析技术
12
作者 程钰海 《信息与电脑》 2022年第24期167-170,共4页
面对日趋增长的数据分析需求,以人工编写SQL方式进行数据分析已无法满足要求,而基于自然语言交互界面的数据分析已成为发展趋势。文章提出了一种基于来自变换器的双向编码器表征量(Bidirectional Encoder Representations from Transfor... 面对日趋增长的数据分析需求,以人工编写SQL方式进行数据分析已无法满足要求,而基于自然语言交互界面的数据分析已成为发展趋势。文章提出了一种基于来自变换器的双向编码器表征量(Bidirectional Encoder Representations from Transformers,BERT)模型的智能数据分析技术,相对于Word2Vec/全局唯一标识分区表(Globally Unique Identifier Partition Table,GPT)等模型,大幅提升了自然语言到SQL转换的准确率,使自然语言交互式数据分析准确率超过人工编写SQL的方式。 展开更多
关键词 来自变换器的双向编码器表征量(bert) 自然语言处理(NLP) 智能数据分析
在线阅读 下载PDF
基于命名实体识别的水电工程施工安全规范实体识别模型
13
作者 陈述 张超 +2 位作者 陈云 张光飞 李智 《中国安全科学学报》 CAS CSCD 北大核心 2024年第9期19-26,共8页
为准确识别水电工程施工安全规范实体,通过预训练模型中双向编码器表征法(BERT)挖掘文本中丰富的语义信息,利用双向长短期记忆神经网络(BILSTM)提取规范实体语义特征,依靠条件随机场(CRF)分析实体之间的依赖关系,构建水电工程施工安全... 为准确识别水电工程施工安全规范实体,通过预训练模型中双向编码器表征法(BERT)挖掘文本中丰富的语义信息,利用双向长短期记忆神经网络(BILSTM)提取规范实体语义特征,依靠条件随机场(CRF)分析实体之间的依赖关系,构建水电工程施工安全规范的命名实体识别模型;以《水利水电工程施工安全防护技术规范》(SL714—2015)为例,计算命名实体识别模型精确率。结果表明:BERT-BILSTM-CRF模型准确率为94.35%,相比于3种传统方法,准确率显著提高。研究成果有助于水电工程施工安全规范知识智能管理,为施工安全隐患智能判别提供支撑。 展开更多
关键词 命名实体识别 水电工程施工 安全规范 双向编码器表征法(bert) 双向长短期记忆神经网络(BILSTM) 条件随机场(CRF)
在线阅读 下载PDF
基于BERT-BiLSTM-CRF的电力集控安全隐患数据处理
14
作者 张滈辰 屈红军 +1 位作者 牛雪莹 耿琴兰 《通信电源技术》 2023年第21期24-27,共4页
为了提高电力集控系统安全隐患数据处理的效果,提出一种基于来自变换器的双向编码器表示-双向长短期记忆网络-条件随机场(Bidirectional Encoder Representations from Transformers-Bidirectional Long Short Term Memory-Conditional ... 为了提高电力集控系统安全隐患数据处理的效果,提出一种基于来自变换器的双向编码器表示-双向长短期记忆网络-条件随机场(Bidirectional Encoder Representations from Transformers-Bidirectional Long Short Term Memory-Conditional Random Fields,BERT-BiLSTM-CRF)的电力集控安全隐患数据处理方法。构建电力集控隐患数据检测模型,应用改进长短时记忆网络(Long Short Term Memory,LSTM)来构建电力集控安全隐患数据修复网络,实现电力集控安全隐患数据处理。实验结果表明,采用所提方法能够更好地完成电力集控安全隐患数据检测与修复,应用效果较好。 展开更多
关键词 来自变换器的双向编码器表示(bert) 双向长短期记忆网络(BiLSTM) 条件随机场(CRF) 电力集控系统 安全隐患数据检测 数据修复
在线阅读 下载PDF
北京市不动产登记运维问题智能分类
15
作者 董承玮 李云汉 +2 位作者 邢晨 肖曼丽 刘世凡 《北京测绘》 2024年第12期1670-1676,共7页
为提高北京市不动产登记的日常运维效率,解决人工处理效率低下、响应时间长的问题,本文提出一种基于变换器的双向编码器表示模型(BERT)的运维问题自动分类方法。首先使用BERT模型提取运维问题文本的上下文语义特征,然后利用全局最大池... 为提高北京市不动产登记的日常运维效率,解决人工处理效率低下、响应时间长的问题,本文提出一种基于变换器的双向编码器表示模型(BERT)的运维问题自动分类方法。首先使用BERT模型提取运维问题文本的上下文语义特征,然后利用全局最大池化技术提取文本的关键类别特征,最后通过Soft Max函数计算各类别的概率,并选择概率最大的类别作为分类结果。实验结果表明,本文方法的宏平均精确率(MP)、宏平均召回率(MR)和宏平均F1值均大于93%,显著优于常用的文本分类技术,充分证明了该方法的有效性,对构建不动产登记智慧运维体系具有一定的参考意义。 展开更多
关键词 不动产 智能分类 预训练语言模型 基于变换器的双向编码器表示模型(bert) 数据集构建
在线阅读 下载PDF
面向方面级情感分类的特征融合学习网络 被引量:1
16
作者 陈金广 赵银歌 马丽丽 《模式识别与人工智能》 CSCD 北大核心 2021年第11期1049-1057,共9页
在方面级情感分类任务中,现有方法强化方面词信息能力较弱,局部特征信息利用不充分.针对上述问题,文中提出面向方面级情感分类的特征融合学习网络.首先,将评论处理为文本、方面和文本-方面的输入序列,通过双向Transformer的表征编码器... 在方面级情感分类任务中,现有方法强化方面词信息能力较弱,局部特征信息利用不充分.针对上述问题,文中提出面向方面级情感分类的特征融合学习网络.首先,将评论处理为文本、方面和文本-方面的输入序列,通过双向Transformer的表征编码器得到输入的向量表示后,使用注意力编码器进行上下文和方面词的建模,获取隐藏状态,提取语义信息.然后,基于隐藏状态特征,采用方面转换组件生成方面级特定的文本向量表示,将方面信息融入上下文表示中.最后,对于方面级特定的文本向量通过文本位置加权模块提取局部特征后,与全局特征进行融合学习,得到最终的表示特征,并进行情感分类.在英文数据集和中文评论数据集上的实验表明,文中网络提升分类效果. 展开更多
关键词 方面级情感分类 双向Transformer的表征编码器(bert) 注意力编码器 局部特征提取 特定方面转换
在线阅读 下载PDF
基于机器阅读理解的中文命名实体识别方法 被引量:8
17
作者 刘奕洋 余正涛 +3 位作者 高盛祥 郭军军 张亚飞 聂冰鸽 《模式识别与人工智能》 EI CSCD 北大核心 2020年第7期653-659,共7页
针对现有命名实体识别方法主要考虑单个句子内的上下文信息,很少考虑文档级上下文影响的问题,文中提出基于机器阅读理解的中文命名实体识别方法,利用阅读理解思想,充分挖掘文档级的上下文特征,支撑实体识别.首先,针对每类实体,将实体识... 针对现有命名实体识别方法主要考虑单个句子内的上下文信息,很少考虑文档级上下文影响的问题,文中提出基于机器阅读理解的中文命名实体识别方法,利用阅读理解思想,充分挖掘文档级的上下文特征,支撑实体识别.首先,针对每类实体,将实体识别任务转化为问答任务,构建问题、文本及实体答案三元组.然后,将三元组信息通过双向Transformer编码器进行预训练,再通过卷积神经网络捕捉文档级文本上下文信息.最后通过二进制分类器实现实体答案预测.在MSRA、人民日报公开数据集和自建数据集上的命名实体识别对比实验表明,文中方法性能较优,阅读理解思想对实体识别具有较好的作用. 展开更多
关键词 命名实体识别(NER) 阅读理解 神经网络 双向Transformer编码器(bert)
在线阅读 下载PDF
面向上下文注意力联合学习网络的方面级情感分类模型 被引量:11
18
作者 杨玉亭 冯林 +1 位作者 代磊超 苏菡 《模式识别与人工智能》 EI CSCD 北大核心 2020年第8期753-765,共13页
针对现有的方面级情感分类模型存在感知方面词能力较弱、泛化能力较差等问题,文中提出面向上下文注意力联合学习网络的方面级情感分类模型(CAJLN).首先,利用双向Transformer的表征编码器(BERT)模型作为编码器,将文本句子预处理成句子、... 针对现有的方面级情感分类模型存在感知方面词能力较弱、泛化能力较差等问题,文中提出面向上下文注意力联合学习网络的方面级情感分类模型(CAJLN).首先,利用双向Transformer的表征编码器(BERT)模型作为编码器,将文本句子预处理成句子、句子对和方面词级输入序列,分别经过BERT单句和句子对分类模型,进行上下文、方面词级和句子对隐藏特征提取.再基于上下文和方面词级隐藏特征,建立上下文和方面词的多种注意力机制,获取方面特定的上下文感知表示.然后,对句子对隐藏特征和方面特定的上下文感知表示进行联合学习.采用Xavier正态分布对权重进行初始化,确保反向传播时参数持续更新,使CAJLN在训练过程中可以学习有用信息.在多个数据集上的仿真实验表明,CAJLN可有效提升短文本情感分类性能. 展开更多
关键词 方面级情感分类 双向Transformer的表征编码器(bert)模型 注意力机制 联合学习
在线阅读 下载PDF
融合多种类型语法信息的属性级情感分析模型 被引量:2
19
作者 肖泽管 陈清亮 《计算机科学与探索》 CSCD 北大核心 2022年第2期395-402,共8页
属性级情感分析(ABSA)的目标是识别出句子中属性的情感倾向。现有的方法大多使用注意力机制隐性地建模属性与上下文中情感表达的关系,而忽略了使用语法信息。一方面,属性的情感倾向与句子中的情感表达有紧密的联系,利用句子的句法结构... 属性级情感分析(ABSA)的目标是识别出句子中属性的情感倾向。现有的方法大多使用注意力机制隐性地建模属性与上下文中情感表达的关系,而忽略了使用语法信息。一方面,属性的情感倾向与句子中的情感表达有紧密的联系,利用句子的句法结构可以更直接地对两者建模;另一方面,由于现有的基准数据集较小,模型无法充分学习通用语法知识,这使得它们难以处理复杂的句型和情感表达。针对以上问题,提出一种利用多种类型语法信息的神经网络模型。该模型采用基于依存句法树的图卷积神经网络(GCN),并利用句法结构信息直接匹配属性与其对应情感表达,缓解冗余信息对分类的干扰。同时,使用预训练模型BERT具有多种类型的语法信息的中间层表示作为指导信息,给予模型更多的语法知识。每一层GCN的输入结合上一层GCN的输出和BERT中间层指导信息。最后将属性在最后一层GCN的表示作为特征进行情感倾向分类。通过在SemEval 2014 Task4 Restaurant、Laptop和Twitter数据集上的实验结果表明,提出模型的分类效果超越了很多基准模型。 展开更多
关键词 属性级 情感分析 基于变换器的双向编码器表示技术(bert) 依存句法树 图卷积神经网络(GCN)
在线阅读 下载PDF
一种自动构建数据集的实体关系抽取方法 被引量:2
20
作者 房冬丽 陈正雄 +1 位作者 黄元稳 衡宇峰 《通信技术》 2021年第8期1862-1868,共7页
近年来,知识图谱领域中实体关系抽取技术得到快速发展,其准确性也大幅提升。然而,大部分文献都没有提供能够反映其内容的、直观的数据结构。依靠人工阅读文本产生实体、关系的方法,在多源、海量文档数据的今天越来越不能满足实际应用的... 近年来,知识图谱领域中实体关系抽取技术得到快速发展,其准确性也大幅提升。然而,大部分文献都没有提供能够反映其内容的、直观的数据结构。依靠人工阅读文本产生实体、关系的方法,在多源、海量文档数据的今天越来越不能满足实际应用的需求,因此提出一种抽取文本中实体关系的方法。该方法基于哈工大语言技术平台(Language Technology Plantform,LTP)和双向编码器(Bidirectional Encoder Representations from Transformer,BERT)模型,可对文本内容实现自动化解析,解决了数据集生成难的问题。此外,通过对BERT模型的优化调整,解决了以往实体关系的抽取需依赖大量资源计算的问题。 展开更多
关键词 实体 关系 抽取 语言技术平台(LTP) 双向编码器(bert)
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部