Obtaining comprehensive and accurate information is very important in intelligent tragic system (ITS). In ITS, the GPS floating car system is an important approach for traffic data acquisition. However, in this syst...Obtaining comprehensive and accurate information is very important in intelligent tragic system (ITS). In ITS, the GPS floating car system is an important approach for traffic data acquisition. However, in this system, the GPS blind areas caused by tall buildings or tunnels could affect the acquisition of tragic information and depress the system performance. Aiming at this problem, a novel method employing a back propagation (BP) neural network is developed to estimate the traffic speed in the GPS blind areas. When the speed of one road section is lost, the speed of its related road sections can be used to estimate its speed. The complete historical data of these road sections are used to train the neural network, using Levenberg-Marquardt learning algorithm. Then, the current speed of the related roads is used by the trained neural network to get the speed of the road section without GPS signal. We compare the speed of the road section estimated by our method with the real speed of this road section, and the experimental results show that the proposed method of traffic speed estimation is very effective.展开更多
A new sub-pixel mapping method based on BP neural network is proposed in order to determine the spatial distribution of class components in each mixed pixel.The network was used to train a model that describes the rel...A new sub-pixel mapping method based on BP neural network is proposed in order to determine the spatial distribution of class components in each mixed pixel.The network was used to train a model that describes the relationship between spatial distribution of target components in mixed pixel and its neighboring information.Then the sub-pixel scaled target could be predicted by the trained model.In order to improve the performance of BP network,BP learning algorithm with momentum was employed.The experiments were conducted both on synthetic images and on hyperspectral imagery(HSI).The results prove that this method is capable of estimating land covers fairly accurately and has a great superiority over some other sub-pixel mapping methods in terms of computational complexity.展开更多
BP( Back Propagation) neural network and PSO( Particle Swarm Optimization) are two main heuristic optimization methods,and are usually used as nonlinear inversion methods in geophysics. The authors applied BP neural n...BP( Back Propagation) neural network and PSO( Particle Swarm Optimization) are two main heuristic optimization methods,and are usually used as nonlinear inversion methods in geophysics. The authors applied BP neural network and BP neural network optimized with PSO into the inversion of 3D density interface respectively,and a comparison was drawn to demonstrate the inversion results. To start with,a synthetic density interface model was created and we used the proceeding inversion methods to test their effectiveness. And then two methods were applied into the inversion of the depth of Moho interface. According to the results,it is clear to find that the application effect of PSO-BP is better than that of BP network. The BP network structures used in both synthetic and field data are consistent in order to obtain preferable inversion results. The applications in synthetic and field tests demonstrate that PSO-BP is a fast and effective method in the inversion of 3D density interface and the optimization effect is evident compared with BP neural network merely,and thus,this method has practical value.展开更多
基金funded by National Key Technology R&D Program of China (No.2006BAG01A03)
文摘Obtaining comprehensive and accurate information is very important in intelligent tragic system (ITS). In ITS, the GPS floating car system is an important approach for traffic data acquisition. However, in this system, the GPS blind areas caused by tall buildings or tunnels could affect the acquisition of tragic information and depress the system performance. Aiming at this problem, a novel method employing a back propagation (BP) neural network is developed to estimate the traffic speed in the GPS blind areas. When the speed of one road section is lost, the speed of its related road sections can be used to estimate its speed. The complete historical data of these road sections are used to train the neural network, using Levenberg-Marquardt learning algorithm. Then, the current speed of the related roads is used by the trained neural network to get the speed of the road section without GPS signal. We compare the speed of the road section estimated by our method with the real speed of this road section, and the experimental results show that the proposed method of traffic speed estimation is very effective.
基金Sponsored by the National Natural Science Foundation of China(Grant No. 60272073, 60402025 and 60802059)by Foundation for the Doctoral Program of Higher Education of China (Grant No. 200802171003)
文摘A new sub-pixel mapping method based on BP neural network is proposed in order to determine the spatial distribution of class components in each mixed pixel.The network was used to train a model that describes the relationship between spatial distribution of target components in mixed pixel and its neighboring information.Then the sub-pixel scaled target could be predicted by the trained model.In order to improve the performance of BP network,BP learning algorithm with momentum was employed.The experiments were conducted both on synthetic images and on hyperspectral imagery(HSI).The results prove that this method is capable of estimating land covers fairly accurately and has a great superiority over some other sub-pixel mapping methods in terms of computational complexity.
基金Supported by National High-tech Research&Development Program of China(863 Project)(No.2014AA06A613)
文摘BP( Back Propagation) neural network and PSO( Particle Swarm Optimization) are two main heuristic optimization methods,and are usually used as nonlinear inversion methods in geophysics. The authors applied BP neural network and BP neural network optimized with PSO into the inversion of 3D density interface respectively,and a comparison was drawn to demonstrate the inversion results. To start with,a synthetic density interface model was created and we used the proceeding inversion methods to test their effectiveness. And then two methods were applied into the inversion of the depth of Moho interface. According to the results,it is clear to find that the application effect of PSO-BP is better than that of BP network. The BP network structures used in both synthetic and field data are consistent in order to obtain preferable inversion results. The applications in synthetic and field tests demonstrate that PSO-BP is a fast and effective method in the inversion of 3D density interface and the optimization effect is evident compared with BP neural network merely,and thus,this method has practical value.