期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
An Advanced Bald Eagle Search Algorithm for Image Enhancement
1
作者 Pei Hu Yibo Han Jeng-Shyang Pan 《Computers, Materials & Continua》 2025年第3期4485-4501,共17页
Image enhancement utilizes intensity transformation functions to maximize the information content of enhanced images.This paper approaches the topic as an optimization problem and uses the bald eagle search(BES)algori... Image enhancement utilizes intensity transformation functions to maximize the information content of enhanced images.This paper approaches the topic as an optimization problem and uses the bald eagle search(BES)algorithm to achieve optimal results.In our proposed model,gamma correction and Retinex address color cast issues and enhance image edges and details.The final enhanced image is obtained through color balancing.The BES algorithm seeks the optimal solution through the selection,search,and swooping stages.However,it is prone to getting stuck in local optima and converges slowly.To overcome these limitations,we propose an improved BES algorithm(ABES)with enhanced population learning,position updates,and control parameters.ABES is employed to optimize the core parameters of gamma correction and Retinex to improve image quality,and the maximization of information entropy is utilized as the objective function.Real benchmark images are collected to validate its performance.Experimental results demonstrate that ABES outperforms the existing image enhancement methods,including the flower pollination algorithm,the chimp optimization algorithm,particle swarm optimization,and BES,in terms of information entropy,peak signal-to-noise ratio(PSNR),structural similarity index(SSIM),and patch-based contrast quality index(PCQI).ABES demonstrates superior performance both qualitatively and quantitatively,and it helps enhance prominent features and contrast in the images while maintaining the natural appearance of the original images. 展开更多
关键词 Image enhancement gamma correction RETINEX bald eagle search algorithm
在线阅读 下载PDF
An Improved Bald Eagle Search Algorithm with Cauchy Mutation and Adaptive Weight Factor for Engineering Optimization 被引量:2
2
作者 Wenchuan Wang Weican Tian +3 位作者 Kwok-wing Chau Yiming Xue Lei Xu Hongfei Zang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第8期1603-1642,共40页
The Bald Eagle Search algorithm(BES)is an emerging meta-heuristic algorithm.The algorithm simulates the hunting behavior of eagles,and obtains an optimal solution through three stages,namely selection stage,search sta... The Bald Eagle Search algorithm(BES)is an emerging meta-heuristic algorithm.The algorithm simulates the hunting behavior of eagles,and obtains an optimal solution through three stages,namely selection stage,search stage and swooping stage.However,BES tends to drop-in local optimization and the maximum value of search space needs to be improved.To fill this research gap,we propose an improved bald eagle algorithm(CABES)that integrates Cauchy mutation and adaptive optimization to improve the performance of BES from local optima.Firstly,CABES introduces the Cauchy mutation strategy to adjust the step size of the selection stage,to select a better search range.Secondly,in the search stage,CABES updates the search position update formula by an adaptive weight factor to further promote the local optimization capability of BES.To verify the performance of CABES,the benchmark function of CEC2017 is used to simulate the algorithm.The findings of the tests are compared to those of the Particle Swarm Optimization algorithm(PSO),Whale Optimization Algorithm(WOA)and Archimedes Algorithm(AOA).The experimental results show that CABES can provide good exploration and development capabilities,and it has strong competitiveness in testing algorithms.Finally,CABES is applied to four constrained engineering problems and a groundwater engineeringmodel,which further verifies the effectiveness and efficiency of CABES in practical engineering problems. 展开更多
关键词 bald eagle search algorithm cauchymutation adaptive weight factor CEC2017 benchmark functions engineering optimization problems
在线阅读 下载PDF
Bald Eagle Search Optimization Algorithm Combined with Spherical Random Shrinkage Mechanism and Its Application 被引量:1
3
作者 Wenyan Guo Zhuolin Hou +2 位作者 Fang Dai Xiaoxia Wang Yufan Qiang 《Journal of Bionic Engineering》 SCIE EI CSCD 2024年第1期572-605,共34页
Over the last two decades,stochastic optimization algorithms have proved to be a very promising approach to solving a variety of complex optimization problems.Bald eagle search optimization(BES)as a new stochastic opt... Over the last two decades,stochastic optimization algorithms have proved to be a very promising approach to solving a variety of complex optimization problems.Bald eagle search optimization(BES)as a new stochastic optimization algorithm with fast convergence speed has the ability of prominent optimization and the defect of collapsing in the local best.To avoid BES collapse at local optima,inspired by the fact that the volume of the sphere is the largest when the surface area is certain,an improved bald eagle search optimization algorithm(INMBES)integrating the random shrinkage mechanism of the sphere is proposed.Firstly,the INMBES embeds spherical coordinates to design a more accurate parameter update method to modify the coverage and dispersion of the population.Secondly,the population splits into elite and non-elite groups and the Bernoulli chaos is applied to elite group to tap around potential solutions of the INMBES.The non-elite group is redistributed again and the Nelder-Mead simplex strategy is applied to each group to accelerate the evolution of the worst individual and the convergence process of the INMBES.The results of Friedman and Wilcoxon rank sum tests of CEC2017 in 10,30,50,and 100 dimensions numerical optimization confirm that the INMBES has superior performance in convergence accuracy and avoiding falling into local optimization compared with other potential improved algorithms but inferior to the champion algorithm and ranking third.The three engineering constraint optimization problems and 26 real world problems and the problem of extracting the best feature subset by encapsulated feature selection method verify that the INMBES’s performance ranks first and has achieved satisfactory accuracy in solving practical problems. 展开更多
关键词 bald eagle search optimization algorithm Spherical coordinates Chaotic variation Simplex method Encapsulated feature selection
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部