Cloud computing plays a significant role in Information Technology(IT)industry to deliver scalable resources as a service.One of the most important factor to increase the performance of the cloud server is maximizing t...Cloud computing plays a significant role in Information Technology(IT)industry to deliver scalable resources as a service.One of the most important factor to increase the performance of the cloud server is maximizing the resource utilization in task scheduling.The main advantage of this scheduling is to max-imize the performance and minimize the time loss.Various researchers examined numerous scheduling methods to achieve Quality of Service(QoS)and to reduce execution time.However,it had disadvantages in terms of low throughput and high response time.Hence,this study aimed to schedule the task efficiently and to eliminate the faults in scheduling the tasks to the Virtual Machines(VMs).For this purpose,the research proposed novel Particle Swarm Optimization-Bandwidth Aware divisible Task(PSO-BATS)scheduling with Multi-Layered Regression Host Employment(MLRHE)to sort out the issues of task scheduling and ease the scheduling operation by load balancing.The proposed efficient sche-duling provides benefits to both cloud users and servers.The performance evalua-tion is undertaken with respect to cost,Performance Improvement Rate(PIR)and makespan which revealed the efficiency of the proposed method.Additionally,comparative analysis is undertaken which confirmed the performance of the intro-duced system than conventional system for scheduling tasks with highflexibility.展开更多
This work proposes a novel nature-inspired algorithm called Ant Lion Optimizer (ALO). The ALO algorithm mimics the search mechanism of antlions in nature. A time domain based objective function is established to tune ...This work proposes a novel nature-inspired algorithm called Ant Lion Optimizer (ALO). The ALO algorithm mimics the search mechanism of antlions in nature. A time domain based objective function is established to tune the parameters of the PI controller based LFC, which is solved by the proposed ALO algorithm to reach the most convenient solutions. A three-area interconnected power system is investigated as a test system under various loading conditions to confirm the effectiveness of the suggested algorithm. Simulation results are given to show the enhanced performance of the developed ALO algorithm based controllers in comparison with Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Bat Algorithm (BAT) and conventional PI controller. These results represent that the proposed BAT algorithm tuned PI controller offers better performance over other soft computing algorithms in conditions of settling times and several performance indices.展开更多
目前的群智能疏散模型多仅考虑单一的经典的群体智能,不足以描述复杂的群体疏散行为特征,且鲜有考虑人群混乱程度对人群疏散的影响。为研究描述多种群体疏散行为的群智能疏散模型,综合使用多种群智能算法,并考虑了人群混乱程度对疏散的...目前的群智能疏散模型多仅考虑单一的经典的群体智能,不足以描述复杂的群体疏散行为特征,且鲜有考虑人群混乱程度对人群疏散的影响。为研究描述多种群体疏散行为的群智能疏散模型,综合使用多种群智能算法,并考虑了人群混乱程度对疏散的影响,构建了熵修正的混合人工蜂群-蝙蝠算法人群疏散模型。首先,采用DBSCAN(density-based spatial clustering of applications with noise)算法进行群组划分。然后,将人群分为群组引导者、群组成员和离散人员3类,并针对每类人群的特点,基于蝙蝠算法描述群组引导者,基于人工蜂群算法描述群组成员,基于粒子群算法描述离散人员。最后,引入定量描述人群混乱程度的疏散熵对群组引导者进行位置修正,构建了熵修正的混合人工蜂群-蝙蝠算法人群疏散模型。仿真结果表明,该模型可以模拟群组疏散,比较符合真实的群组疏散形状,以群组形式疏散一定程度提高了疏散效率;同时,引入疏散熵进行修正后,群组引导者可以引导群组成员避开前方混乱区域,避免了人群过度集中,增强了疏散的安全性与快速性。展开更多
One of the surface mining methods is open-pit mining,by which a pit is dug to extract ore or waste downwards from the earth’s surface.In the mining industry,one of the most significant difficulties is long-term produ...One of the surface mining methods is open-pit mining,by which a pit is dug to extract ore or waste downwards from the earth’s surface.In the mining industry,one of the most significant difficulties is long-term production scheduling(LTPS)of the open-pit mines.Deterministic and uncertainty-based approaches are identified as the main strategies,which have been widely used to cope with this problem.Within the last few years,many researchers have highly considered a new computational type,which is less costly,i.e.,meta-heuristic methods,so as to solve the mine design and production scheduling problem.Although the optimality of the final solution cannot be guaranteed,they are able to produce sufficiently good solutions with relatively less computational costs.In the present paper,two hybrid models between augmented Lagrangian relaxation(ALR)and a particle swarm optimization(PSO)and ALR and bat algorithm(BA)are suggested so that the LTPS problem is solved under the condition of grade uncertainty.It is suggested to carry out the ALR method on the LTPS problem to improve its performance and accelerate the convergence.Moreover,the Lagrangian coefficients are updated by using PSO and BA.The presented models have been compared with the outcomes of the ALR-genetic algorithm,the ALR-traditional sub-gradient method,and the conventional method without using the Lagrangian approach.The results indicated that the ALR is considered a more efficient approach which can solve a large-scale problem and make a valid solution.Hence,it is more effectual than the conventional method.Furthermore,the time and cost of computation are diminished by the proposed hybrid strategies.The CPU time using the ALR-BA method is about 7.4%higher than the ALR-PSO approach.展开更多
文摘Cloud computing plays a significant role in Information Technology(IT)industry to deliver scalable resources as a service.One of the most important factor to increase the performance of the cloud server is maximizing the resource utilization in task scheduling.The main advantage of this scheduling is to max-imize the performance and minimize the time loss.Various researchers examined numerous scheduling methods to achieve Quality of Service(QoS)and to reduce execution time.However,it had disadvantages in terms of low throughput and high response time.Hence,this study aimed to schedule the task efficiently and to eliminate the faults in scheduling the tasks to the Virtual Machines(VMs).For this purpose,the research proposed novel Particle Swarm Optimization-Bandwidth Aware divisible Task(PSO-BATS)scheduling with Multi-Layered Regression Host Employment(MLRHE)to sort out the issues of task scheduling and ease the scheduling operation by load balancing.The proposed efficient sche-duling provides benefits to both cloud users and servers.The performance evalua-tion is undertaken with respect to cost,Performance Improvement Rate(PIR)and makespan which revealed the efficiency of the proposed method.Additionally,comparative analysis is undertaken which confirmed the performance of the intro-duced system than conventional system for scheduling tasks with highflexibility.
文摘This work proposes a novel nature-inspired algorithm called Ant Lion Optimizer (ALO). The ALO algorithm mimics the search mechanism of antlions in nature. A time domain based objective function is established to tune the parameters of the PI controller based LFC, which is solved by the proposed ALO algorithm to reach the most convenient solutions. A three-area interconnected power system is investigated as a test system under various loading conditions to confirm the effectiveness of the suggested algorithm. Simulation results are given to show the enhanced performance of the developed ALO algorithm based controllers in comparison with Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Bat Algorithm (BAT) and conventional PI controller. These results represent that the proposed BAT algorithm tuned PI controller offers better performance over other soft computing algorithms in conditions of settling times and several performance indices.
文摘目前的群智能疏散模型多仅考虑单一的经典的群体智能,不足以描述复杂的群体疏散行为特征,且鲜有考虑人群混乱程度对人群疏散的影响。为研究描述多种群体疏散行为的群智能疏散模型,综合使用多种群智能算法,并考虑了人群混乱程度对疏散的影响,构建了熵修正的混合人工蜂群-蝙蝠算法人群疏散模型。首先,采用DBSCAN(density-based spatial clustering of applications with noise)算法进行群组划分。然后,将人群分为群组引导者、群组成员和离散人员3类,并针对每类人群的特点,基于蝙蝠算法描述群组引导者,基于人工蜂群算法描述群组成员,基于粒子群算法描述离散人员。最后,引入定量描述人群混乱程度的疏散熵对群组引导者进行位置修正,构建了熵修正的混合人工蜂群-蝙蝠算法人群疏散模型。仿真结果表明,该模型可以模拟群组疏散,比较符合真实的群组疏散形状,以群组形式疏散一定程度提高了疏散效率;同时,引入疏散熵进行修正后,群组引导者可以引导群组成员避开前方混乱区域,避免了人群过度集中,增强了疏散的安全性与快速性。
文摘One of the surface mining methods is open-pit mining,by which a pit is dug to extract ore or waste downwards from the earth’s surface.In the mining industry,one of the most significant difficulties is long-term production scheduling(LTPS)of the open-pit mines.Deterministic and uncertainty-based approaches are identified as the main strategies,which have been widely used to cope with this problem.Within the last few years,many researchers have highly considered a new computational type,which is less costly,i.e.,meta-heuristic methods,so as to solve the mine design and production scheduling problem.Although the optimality of the final solution cannot be guaranteed,they are able to produce sufficiently good solutions with relatively less computational costs.In the present paper,two hybrid models between augmented Lagrangian relaxation(ALR)and a particle swarm optimization(PSO)and ALR and bat algorithm(BA)are suggested so that the LTPS problem is solved under the condition of grade uncertainty.It is suggested to carry out the ALR method on the LTPS problem to improve its performance and accelerate the convergence.Moreover,the Lagrangian coefficients are updated by using PSO and BA.The presented models have been compared with the outcomes of the ALR-genetic algorithm,the ALR-traditional sub-gradient method,and the conventional method without using the Lagrangian approach.The results indicated that the ALR is considered a more efficient approach which can solve a large-scale problem and make a valid solution.Hence,it is more effectual than the conventional method.Furthermore,the time and cost of computation are diminished by the proposed hybrid strategies.The CPU time using the ALR-BA method is about 7.4%higher than the ALR-PSO approach.