Necessary and sufficient conditions for equalities between a 2 y′(I-P Xx)y and minimum norm quadratic unbiased estimator of variance under the general linear model, where a 2 is a known positive number, are...Necessary and sufficient conditions for equalities between a 2 y′(I-P Xx)y and minimum norm quadratic unbiased estimator of variance under the general linear model, where a 2 is a known positive number, are derived. Further, when the Gauss? Markov estimators and the ordinary least squares estimator are identical, a relative simply equivalent condition is obtained. At last, this condition is applied to an interesting example.展开更多
Our purpose is twofold: to present a prototypical example of the conditioning technique to obtain the best estimator of a parameter and to show that th</span><span style="font-family:Verdana;">is...Our purpose is twofold: to present a prototypical example of the conditioning technique to obtain the best estimator of a parameter and to show that th</span><span style="font-family:Verdana;">is technique resides in the structure of an inner product space. Th</span><span style="font-family:Verdana;">e technique uses conditioning </span></span><span style="font-family:Verdana;">of</span><span style="font-family:Verdana;"> an unbiased estimator </span><span style="font-family:Verdana;">on</span><span style="font-family:Verdana;"> a sufficient statistic. This procedure is founded upon the conditional variance formula, which leads to an inner product space and a geometric interpretation. The example clearly illustrates the dependence on the sampling methodology. These advantages show the power and centrality of this process.展开更多
The solution of the grey model(GM(1,1)model)generally involves equal-precision observations,and the(co)variance matrix is established from the prior information.However,the data are generally available with unequal-pr...The solution of the grey model(GM(1,1)model)generally involves equal-precision observations,and the(co)variance matrix is established from the prior information.However,the data are generally available with unequal-precision measurements in reality.To deal with the errors of all observations for GM(1,1)model with errors-in-variables(EIV)structure,we exploit the total least-squares(TLS)algorithm to estimate the parameters of GM(1,1)model in this paper.Ignoring that the effect of the improper prior stochastic model and the homologous observations may degrade the accuracy of parameter estimation,we further present a nonlinear total least-squares variance component estimation approach for GM(1,1)model,which resorts to the minimum norm quadratic unbiased estimation(MINQUE).The practical and simulative experiments indicate that the presented approach has significant merits in improving the predictive accuracy in comparison with control methods.展开更多
In this paper, necessary and sufficient conditions for equalities betweenα~2y^1(I-P_X)y and under the general linear model, whereand α~2 is a known positive number, are derived. Furthermore, when the Gauss-Markovest...In this paper, necessary and sufficient conditions for equalities betweenα~2y^1(I-P_X)y and under the general linear model, whereand α~2 is a known positive number, are derived. Furthermore, when the Gauss-Markovestimators and the ordinary least squares estimators are identical, we obtain a simpleequivalent condition.展开更多
文摘Necessary and sufficient conditions for equalities between a 2 y′(I-P Xx)y and minimum norm quadratic unbiased estimator of variance under the general linear model, where a 2 is a known positive number, are derived. Further, when the Gauss? Markov estimators and the ordinary least squares estimator are identical, a relative simply equivalent condition is obtained. At last, this condition is applied to an interesting example.
文摘Our purpose is twofold: to present a prototypical example of the conditioning technique to obtain the best estimator of a parameter and to show that th</span><span style="font-family:Verdana;">is technique resides in the structure of an inner product space. Th</span><span style="font-family:Verdana;">e technique uses conditioning </span></span><span style="font-family:Verdana;">of</span><span style="font-family:Verdana;"> an unbiased estimator </span><span style="font-family:Verdana;">on</span><span style="font-family:Verdana;"> a sufficient statistic. This procedure is founded upon the conditional variance formula, which leads to an inner product space and a geometric interpretation. The example clearly illustrates the dependence on the sampling methodology. These advantages show the power and centrality of this process.
基金supported by the National Natural Science Foundation of China(No.41874001 and No.41664001)Support Program for Outstanding Youth Talents in Jiangxi Province(No.20162BCB23050)National Key Research and Development Program(No.2016YFB0501405)。
文摘The solution of the grey model(GM(1,1)model)generally involves equal-precision observations,and the(co)variance matrix is established from the prior information.However,the data are generally available with unequal-precision measurements in reality.To deal with the errors of all observations for GM(1,1)model with errors-in-variables(EIV)structure,we exploit the total least-squares(TLS)algorithm to estimate the parameters of GM(1,1)model in this paper.Ignoring that the effect of the improper prior stochastic model and the homologous observations may degrade the accuracy of parameter estimation,we further present a nonlinear total least-squares variance component estimation approach for GM(1,1)model,which resorts to the minimum norm quadratic unbiased estimation(MINQUE).The practical and simulative experiments indicate that the presented approach has significant merits in improving the predictive accuracy in comparison with control methods.
基金Supported by China Mathematics Tian Yuan Youth Foundation (10226024) and China Postdoctoral Science Foundation.
文摘In this paper, necessary and sufficient conditions for equalities betweenα~2y^1(I-P_X)y and under the general linear model, whereand α~2 is a known positive number, are derived. Furthermore, when the Gauss-Markovestimators and the ordinary least squares estimators are identical, we obtain a simpleequivalent condition.