期刊文献+
共找到281篇文章
< 1 2 15 >
每页显示 20 50 100
Bayesian network structure learning by dynamic programming algorithm based on node block sequence constraints
1
作者 Chuchao He Ruohai Di +1 位作者 Bo Li Evgeny Neretin 《CAAI Transactions on Intelligence Technology》 2024年第6期1605-1622,共18页
The use of dynamic programming(DP)algorithms to learn Bayesian network structures is limited by their high space complexity and difficulty in learning the structure of large-scale networks.Therefore,this study propose... The use of dynamic programming(DP)algorithms to learn Bayesian network structures is limited by their high space complexity and difficulty in learning the structure of large-scale networks.Therefore,this study proposes a DP algorithm based on node block sequence constraints.The proposed algorithm constrains the traversal process of the parent graph by using the M-sequence matrix to considerably reduce the time consumption and space complexity by pruning the traversal process of the order graph using the node block sequence.Experimental results show that compared with existing DP algorithms,the proposed algorithm can obtain learning results more efficiently with less than 1%loss of accuracy,and can be used for learning larger-scale networks. 展开更多
关键词 bayesian network(bn) dynamic programming(DP) node block sequence strongly connected component(SCC) structure learning
在线阅读 下载PDF
BN-GEPSO:Learning Bayesian Network Structure Using Generalized Particle Swarm Optimization
2
作者 Muhammad Saad Salman Ibrahim M.Almanjahie +1 位作者 AmanUllah Yasin Ammara Nawaz Cheema 《Computers, Materials & Continua》 SCIE EI 2023年第5期4217-4229,共13页
At present Bayesian Networks(BN)are being used widely for demonstrating uncertain knowledge in many disciplines,including biology,computer science,risk analysis,service quality analysis,and business.But they suffer fr... At present Bayesian Networks(BN)are being used widely for demonstrating uncertain knowledge in many disciplines,including biology,computer science,risk analysis,service quality analysis,and business.But they suffer from the problem that when the nodes and edges increase,the structure learning difficulty increases and algorithms become inefficient.To solve this problem,heuristic optimization algorithms are used,which tend to find a near-optimal answer rather than an exact one,with particle swarm optimization(PSO)being one of them.PSO is a swarm intelligence-based algorithm having basic inspiration from flocks of birds(how they search for food).PSO is employed widely because it is easier to code,converges quickly,and can be parallelized easily.We use a recently proposed version of PSO called generalized particle swarm optimization(GEPSO)to learn bayesian network structure.We construct an initial directed acyclic graph(DAG)by using the max-min parent’s children(MMPC)algorithm and cross relative average entropy.ThisDAGis used to create a population for theGEPSO optimization procedure.Moreover,we propose a velocity update procedure to increase the efficiency of the algorithmic search process.Results of the experiments show that as the complexity of the dataset increases,our algorithm Bayesian network generalized particle swarm optimization(BN-GEPSO)outperforms the PSO algorithm in terms of the Bayesian information criterion(BIC)score. 展开更多
关键词 bayesian network structure learning particle swarm optimization
在线阅读 下载PDF
Learning Bayesian network structure with immune algorithm 被引量:4
3
作者 Zhiqiang Cai Shubin Si +1 位作者 Shudong Sun Hongyan Dui 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第2期282-291,共10页
Finding out reasonable structures from bulky data is one of the difficulties in modeling of Bayesian network (BN), which is also necessary in promoting the application of BN. This pa- per proposes an immune algorith... Finding out reasonable structures from bulky data is one of the difficulties in modeling of Bayesian network (BN), which is also necessary in promoting the application of BN. This pa- per proposes an immune algorithm based method (BN-IA) for the learning of the BN structure with the idea of vaccination. Further- more, the methods on how to extract the effective vaccines from local optimal structure and root nodes are also described in details. Finally, the simulation studies are implemented with the helicopter convertor BN model and the car start BN model. The comparison results show that the proposed vaccines and the BN-IA can learn the BN structure effectively and efficiently. 展开更多
关键词 structure learning bayesian network immune algorithm local optimal structure VACCINATION
在线阅读 下载PDF
Structure learning on Bayesian networks by finding the optimal ordering with and without priors 被引量:5
4
作者 HE Chuchao GAO Xiaoguang GUO Zhigao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第6期1209-1227,共19页
Ordering based search methods have advantages over graph based search methods for structure learning of Bayesian networks in terms on the efficiency. With the aim of further increasing the accuracy of ordering based s... Ordering based search methods have advantages over graph based search methods for structure learning of Bayesian networks in terms on the efficiency. With the aim of further increasing the accuracy of ordering based search methods, we first propose to increase the search space, which can facilitate escaping from the local optima. We present our search operators with majorizations, which are easy to implement. Experiments show that the proposed algorithm can obtain significantly more accurate results. With regard to the problem of the decrease on efficiency due to the increase of the search space, we then propose to add path priors as constraints into the swap process. We analyze the coefficient which may influence the performance of the proposed algorithm, the experiments show that the constraints can enhance the efficiency greatly, while has little effect on the accuracy. The final experiments show that, compared to other competitive methods, the proposed algorithm can find better solutions while holding high efficiency at the same time on both synthetic and real data sets. 展开更多
关键词 bayesian network structure learning ordering search space graph search space prior constraint
在线阅读 下载PDF
Application of CS-PSO algorithm in Bayesian network structure learning 被引量:3
5
作者 LI Jun-wu LI Guo-ning ZHANG Ding 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2020年第1期94-102,共9页
In view of the shortcomings of traditional Bayesian network(BN)structure learning algorithm,such as low efficiency,premature algorithm and poor learning effect,the intelligent algorithm of cuckoo search(CS)and particl... In view of the shortcomings of traditional Bayesian network(BN)structure learning algorithm,such as low efficiency,premature algorithm and poor learning effect,the intelligent algorithm of cuckoo search(CS)and particle swarm optimization(PSO)is selected.Combined with the characteristics of BN structure,a BN structure learning algorithm of CS-PSO is proposed.Firstly,the CS algorithm is improved from the following three aspects:the maximum spanning tree is used to guide the initialization direction of the CS algorithm,the fitness of the solution is used to adjust the optimization and abandoning process of the solution,and PSO algorithm is used to update the position of the CS algorithm.Secondly,according to the structure characteristics of BN,the CS-PSO algorithm is applied to the structure learning of BN.Finally,chest clinic,credit and car diagnosis classic network are utilized as the simulation model,and the modeling and simulation comparison of greedy algorithm,K2 algorithm,CS algorithm and CS-PSO algorithm are carried out.The results show that the CS-PSO algorithm has fast convergence speed,high convergence accuracy and good stability in the structure learning of BN,and it can get the accurate BN structure model faster and better. 展开更多
关键词 bayesian network structure learning cuckoo search and particle swarm optimization(CS-PSO)
在线阅读 下载PDF
Causal constraint pruning for exact learning of Bayesian network structure 被引量:1
6
作者 TAN Xiangyuan GAO Xiaoguang +1 位作者 HE Chuchao WANG Zidong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第4期854-872,共19页
How to improve the efficiency of exact learning of the Bayesian network structure is a challenging issue.In this paper,four different causal constraints algorithms are added into score calculations to prune possible p... How to improve the efficiency of exact learning of the Bayesian network structure is a challenging issue.In this paper,four different causal constraints algorithms are added into score calculations to prune possible parent sets,improving state-ofthe-art learning algorithms’efficiency.Experimental results indicate that exact learning algorithms can significantly improve the efficiency with only a slight loss of accuracy.Under causal constraints,these exact learning algorithms can prune about 70%possible parent sets and reduce about 60%running time while only losing no more than 2%accuracy on average.Additionally,with sufficient samples,exact learning algorithms with causal constraints can also obtain the optimal network.In general,adding max-min parents and children constraints has better results in terms of efficiency and accuracy among these four causal constraints algorithms. 展开更多
关键词 bayesian network structure learning exact learning algorithm causal constraint
在线阅读 下载PDF
Using junction trees for structural learning of Bayesian networks 被引量:1
7
作者 Mingmin Zhu Sanyang Liu +1 位作者 Youlong Yang Kui Liu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第2期286-292,共7页
The learning Bayesian network (BN) structure from data is an NP-hard problem and still one of the most exciting chal- lenges in the machine learning. In this work, a novel algorithm is presented which combines ideas... The learning Bayesian network (BN) structure from data is an NP-hard problem and still one of the most exciting chal- lenges in the machine learning. In this work, a novel algorithm is presented which combines ideas from local learning, constraint- based, and search-and-score techniques in a principled and ef- fective way. It first reconstructs the junction tree of a BN and then performs a K2-scoring greedy search to orientate the local edges in the cliques of junction tree. Theoretical and experimental results show the proposed algorithm is capable of handling networks with a large number of variables. Its comparison with the well-known K2 algorithm is also presented. 展开更多
关键词 bayesian network (bn junction tree scoring function structural learning conditional independence.
在线阅读 下载PDF
Self-Awakened Particle Swarm Optimization BN Structure Learning Algorithm Based on Search Space Constraint
8
作者 Kun Liu Peiran Li +3 位作者 Yu Zhang Jia Ren Xianyu Wang Uzair Aslam Bhatti 《Computers, Materials & Continua》 SCIE EI 2023年第9期3257-3274,共18页
To obtain the optimal Bayesian network(BN)structure,researchers often use the hybrid learning algorithm that combines the constraint-based(CB)method and the score-and-search(SS)method.This hybrid method has the proble... To obtain the optimal Bayesian network(BN)structure,researchers often use the hybrid learning algorithm that combines the constraint-based(CB)method and the score-and-search(SS)method.This hybrid method has the problemthat the search efficiency could be improved due to the ample search space.The search process quickly falls into the local optimal solution,unable to obtain the global optimal.Based on this,the Particle SwarmOptimization(PSO)algorithm based on the search space constraint process is proposed.In the first stage,the method uses dynamic adjustment factors to constrain the structure search space and enrich the diversity of the initial particles.In the second stage,the update mechanism is redefined,so that each step of the update process is consistent with the current structure which forms a one-to-one correspondence.At the same time,the“self-awakened”mechanism is added to prevent precocious particles frombeing part of the best.After the fitness value of the particle converges prematurely,the activation operation makes the particles jump out of the local optimal values to prevent the algorithmfromconverging too quickly into the local optimum.Finally,the standard network dataset was compared with other algorithms.The experimental results showed that the algorithmcould find the optimal solution at a small number of iterations and a more accurate network structure to verify the algorithm’s effectiveness. 展开更多
关键词 bayesian network structure learning particle swarm optimization
在线阅读 下载PDF
A Hybrid Method:Resolving the Impact of Variable Ordering in Bayesian Network Structure Learning
9
作者 Minglan Li Yueqin Hu 《Fudan Journal of the Humanities and Social Sciences》 2025年第1期175-191,共17页
In recent years,the development of machine learning has introduced new analytical methods to theoretical research,one of which is Bayesian network—a probabilistic graphical model well-suited for modelling complex non... In recent years,the development of machine learning has introduced new analytical methods to theoretical research,one of which is Bayesian network—a probabilistic graphical model well-suited for modelling complex non-deterministic systems.A recent study has revealed that the order in which variables are read from data can impact the structure of a Bayesian network(Kitson and Constantinou in The impact of variable ordering on Bayesian Network Structure Learning,2022.arXiv preprint arXiv:2206.08952).However,in empirical studies,the variable order in a dataset is often arbitrary,leading to unreliable results.To address this issue,this study proposed a hybrid method that combined theory-driven and data-driven approaches to mitigate the impact of variable ordering on the learning of Bayesian network structures.The proposed method was illustrated using an empirical study predicting depression and aggressive behavior in high school students.The results demonstrated that the obtained Bayesian network structure is robust to variable orders and theoretically interpretable.The commonalities and specificities in the network structure of depression and aggressive behavior are both in line with theorical expectations,providing empirical evidence for the validity of the hybrid method. 展开更多
关键词 bayesian network structure learning Complete partially directed acyclic graph DEPRESSION Aggressive behavior
原文传递
Finding optimal Bayesian networks by a layered learning method 被引量:4
10
作者 YANG Yu GAO Xiaoguang GUO Zhigao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第5期946-958,共13页
It is unpractical to learn the optimal structure of a big Bayesian network(BN)by exhausting the feasible structures,since the number of feasible structures is super exponential on the number of nodes.This paper propos... It is unpractical to learn the optimal structure of a big Bayesian network(BN)by exhausting the feasible structures,since the number of feasible structures is super exponential on the number of nodes.This paper proposes an approach to layer nodes of a BN by using the conditional independence testing.The parents of a node layer only belong to the layer,or layers who have priority over the layer.When a set of nodes has been layered,the number of feasible structures over the nodes can be remarkably reduced,which makes it possible to learn optimal BN structures for bigger sizes of nodes by accurate algorithms.Integrating the dynamic programming(DP)algorithm with the layering approach,we propose a hybrid algorithm—layered optimal learning(LOL)to learn BN structures.Benefitted by the layering approach,the complexity of the DP algorithm reduces to O(ρ2^n?1)from O(n2^n?1),whereρ<n.Meanwhile,the memory requirements for storing intermediate results are limited to O(C k#/k#^2 )from O(Cn/n^2 ),where k#<n.A case study on learning a standard BN with 50 nodes is conducted.The results demonstrate the superiority of the LOL algorithm,with respect to the Bayesian information criterion(BIC)score criterion,over the hill-climbing,max-min hill-climbing,PC,and three-phrase dependency analysis algorithms. 展开更多
关键词 bayesian network (bn) structure learning layeredoptimal learning (LOL)
在线阅读 下载PDF
Learning Bayesian networks by constrained Bayesian estimation 被引量:3
11
作者 GAO Xiaoguang YANG Yu GUO Zhigao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第3期511-524,共14页
Bayesian networks (BNs) have become increasingly popular in recent years due to their wide-ranging applications in modeling uncertain knowledge. An essential problem about discrete BNs is learning conditional probabil... Bayesian networks (BNs) have become increasingly popular in recent years due to their wide-ranging applications in modeling uncertain knowledge. An essential problem about discrete BNs is learning conditional probability table (CPT) parameters. If training data are sparse, purely data-driven methods often fail to learn accurate parameters. Then, expert judgments can be introduced to overcome this challenge. Parameter constraints deduced from expert judgments can cause parameter estimates to be consistent with domain knowledge. In addition, Dirichlet priors contain information that helps improve learning accuracy. This paper proposes a constrained Bayesian estimation approach to learn CPTs by incorporating constraints and Dirichlet priors. First, a posterior distribution of BN parameters is developed over a restricted parameter space based on training data and Dirichlet priors. Then, the expectation of the posterior distribution is taken as a parameter estimation. As it is difficult to directly compute the expectation for a continuous distribution with an irregular feasible domain, we apply the Monte Carlo method to approximate it. In the experiments on learning standard BNs, the proposed method outperforms competing methods. It suggests that the proposed method can facilitate solving real-world problems. Additionally, a case study of Wine data demonstrates that the proposed method achieves the highest classification accuracy. 展开更多
关键词 bayesian networks (bns) PARAMETER learning CONSTRAINTS SPARSE data
在线阅读 下载PDF
Learning Bayesian networks using genetic algorithm 被引量:3
12
作者 Chen Fei Wang Xiufeng Rao Yimei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第1期142-147,共6页
A new method to evaluate the fitness of the Bayesian networks according to the observed data is provided. The main advantage of this criterion is that it is suitable for both the complete and incomplete cases while th... A new method to evaluate the fitness of the Bayesian networks according to the observed data is provided. The main advantage of this criterion is that it is suitable for both the complete and incomplete cases while the others not. Moreover it facilitates the computation greatly. In order to reduce the search space, the notation of equivalent class proposed by David Chickering is adopted. Instead of using the method directly, the novel criterion, variable ordering, and equivalent class are combined,moreover the proposed mthod avoids some problems caused by the previous one. Later, the genetic algorithm which allows global convergence, lack in the most of the methods searching for Bayesian network is applied to search for a good model in thisspace. To speed up the convergence, the genetic algorithm is combined with the greedy algorithm. Finally, the simulation shows the validity of the proposed approach. 展开更多
关键词 bayesian networks Genetic algorithm structure learning Equivalent class
在线阅读 下载PDF
Bayesian network learning algorithm based on unconstrained optimization and ant colony optimization 被引量:3
13
作者 Chunfeng Wang Sanyang Liu Mingmin Zhu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第5期784-790,共7页
Structure learning of Bayesian networks is a wellresearched but computationally hard task.For learning Bayesian networks,this paper proposes an improved algorithm based on unconstrained optimization and ant colony opt... Structure learning of Bayesian networks is a wellresearched but computationally hard task.For learning Bayesian networks,this paper proposes an improved algorithm based on unconstrained optimization and ant colony optimization(U-ACO-B) to solve the drawbacks of the ant colony optimization(ACO-B).In this algorithm,firstly,an unconstrained optimization problem is solved to obtain an undirected skeleton,and then the ACO algorithm is used to orientate the edges,thus returning the final structure.In the experimental part of the paper,we compare the performance of the proposed algorithm with ACO-B algorithm.The experimental results show that our method is effective and greatly enhance convergence speed than ACO-B algorithm. 展开更多
关键词 bayesian network structure learning ant colony optimization unconstrained optimization
在线阅读 下载PDF
Learning Bayesian Networks from Data by Particle Swarm Optimization 被引量:2
14
作者 杜涛 张申生 王宗江 《Journal of Shanghai Jiaotong university(Science)》 EI 2006年第4期423-429,共7页
Learning Bayesian network is an NP-hard problem. When the number of variables is large, the process of searching optimal network structure could be very time consuming and tends to return a structure which is local op... Learning Bayesian network is an NP-hard problem. When the number of variables is large, the process of searching optimal network structure could be very time consuming and tends to return a structure which is local optimal.The particle swarm optimization (PSO) was introduced to the problem of learning Bayesian networks and a novel structure learning algorithm using PSO was proposed. To search in directed acyclic graphs spaces efficiently, a discrete PSO algorithm especially for structure learning was proposed based on the characteristics of Bayesian networks. The results of experiments show that our PSO based algorithm is fast for convergence and can obtain better structures compared with genetic algorithm based algorithms. 展开更多
关键词 bayesian networks structure learning PARTICLE SWARM optimization(PSO)
在线阅读 下载PDF
A Bayesian Network Learning Algorithm Based on Independence Test and Ant Colony Optimization 被引量:20
15
作者 JI Jun-Zhong ZHANG Hong-Xun HU Ren-Bing LIU Chun-Nian 《自动化学报》 EI CSCD 北大核心 2009年第3期281-288,共8页
关键词 最优化 随机系统 自动化 bn
在线阅读 下载PDF
COMBINED ALGORITHM FOR THE ESSENTIAL GRAPH OF BAYESIAN NETWORK STRUCTURES
16
作者 Li Binghan Liu Sanyang Li Zhanguo 《Journal of Electronics(China)》 2010年第6期822-829,共8页
Learning Bayesian network structure is one of the most important branches in Bayesian network. The most popular graphical representative of a Bayesian network structure is an essential graph. This paper shows a combin... Learning Bayesian network structure is one of the most important branches in Bayesian network. The most popular graphical representative of a Bayesian network structure is an essential graph. This paper shows a combined algorithm according to the three rules for finding the essential graph of a given directed acyclic graph. Moreover, the complexity and advantages of this combined algorithm over others are also discussed. The aim of this paper is to present the proof of the correctness of the combined algorithm. 展开更多
关键词 bayesian networks structure learning Equivalence class Essential graph
在线阅读 下载PDF
Evaluating the Efficacy of Latent Variables in Mitigating Data Poisoning Attacks in the Context of Bayesian Networks:An Empirical Study
17
作者 Shahad Alzahrani Hatim Alsuwat Emad Alsuwat 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1635-1654,共20页
Bayesian networks are a powerful class of graphical decision models used to represent causal relationships among variables.However,the reliability and integrity of learned Bayesian network models are highly dependent ... Bayesian networks are a powerful class of graphical decision models used to represent causal relationships among variables.However,the reliability and integrity of learned Bayesian network models are highly dependent on the quality of incoming data streams.One of the primary challenges with Bayesian networks is their vulnerability to adversarial data poisoning attacks,wherein malicious data is injected into the training dataset to negatively influence the Bayesian network models and impair their performance.In this research paper,we propose an efficient framework for detecting data poisoning attacks against Bayesian network structure learning algorithms.Our framework utilizes latent variables to quantify the amount of belief between every two nodes in each causal model over time.We use our innovative methodology to tackle an important issue with data poisoning assaults in the context of Bayesian networks.With regard to four different forms of data poisoning attacks,we specifically aim to strengthen the security and dependability of Bayesian network structure learning techniques,such as the PC algorithm.By doing this,we explore the complexity of this area and offer workablemethods for identifying and reducing these sneaky dangers.Additionally,our research investigates one particular use case,the“Visit to Asia Network.”The practical consequences of using uncertainty as a way to spot cases of data poisoning are explored in this inquiry,which is of utmost relevance.Our results demonstrate the promising efficacy of latent variables in detecting and mitigating the threat of data poisoning attacks.Additionally,our proposed latent-based framework proves to be sensitive in detecting malicious data poisoning attacks in the context of stream data. 展开更多
关键词 bayesian networks data poisoning attacks latent variables structure learning algorithms adversarial attacks
在线阅读 下载PDF
基于改进DEMATEL-ISM-BN的人因视角下煤矿事故致因研究
18
作者 赵天亮 王冰山 +7 位作者 台发强 姜琦 王永杰 代宗 常金鹏 马晟翔 傅贵 姜伟 《安全与环境工程》 北大核心 2025年第1期91-99,117,共10页
为深入探究人因视角下煤矿事故致因因素之间的相互作用关系和作用路径,找到关键影响因素,通过文献研究、资料收集和现场调研等方法,结合人因分析和分类系统(HFACS)模型理论,构建了包含规章制度完善和实施水平、安全培训水平和安全投入... 为深入探究人因视角下煤矿事故致因因素之间的相互作用关系和作用路径,找到关键影响因素,通过文献研究、资料收集和现场调研等方法,结合人因分析和分类系统(HFACS)模型理论,构建了包含规章制度完善和实施水平、安全培训水平和安全投入水平等14项指标的人因视角下煤矿事故影响因素体系,并运用基于灰色理论(Grey theory)和贝叶斯网络(BN)的决策试验与评价实验室法与解释结构模型(DEMATEL-ISM)对影响因素进行了分析,得到了各影响因素的关键程度、层次关系、作用路径和人因视角下煤矿事故最大致因链路径。结果表明:首先,利用Grey-DEMATEL法研究分析各影响因素中心度与原因度,识别出安全培训水平、员工安全意识水平、员工知识技能水平、员工安全心理水平等主要影响因素;然后,利用ISM法划分影响因素间的层次关系,得到安全文化水平是本质影响因素,规章制度完善和实施水平、安全投入水平、纠正问题水平等11个因素是过渡影响因素,违章指挥、违规作业是表层影响因素;最后,运用构建的BN模型反向诊断推理得到最大致因路径。研究结果可为人因视角下煤矿事故预防研究提供理论依据和决策支撑。 展开更多
关键词 煤矿事故 人因分析 灰色理论 决策试验与评价实验室法(DEMATEL) 解释结构模型(ISM) 贝叶斯网络(bn)
在线阅读 下载PDF
A New Approach to Learn the Equivalence Class of Bayesian Network
19
作者 张盈侠 杨有龙 崔剑飞 《Journal of Donghua University(English Edition)》 EI CAS 2015年第2期257-260,共4页
It's a well-known fact that constraint-based algorithms for learning Bayesian network(BN) structure reckon on a large number of conditional independence(C1) tests.Therefore,it is difficult to learn a BN for indica... It's a well-known fact that constraint-based algorithms for learning Bayesian network(BN) structure reckon on a large number of conditional independence(C1) tests.Therefore,it is difficult to learn a BN for indicating the original causal relations in the true graph.In this paper,a two-phase method for learning equivalence class of BN is introduced.The first phase of the method learns a skeleton of the BN by CI tests.In this way,it reduces the number of tests compared with other existing algorithms and decreases the running time drastically.The second phase of the method orients edges that exist in all BN equivalence classes.Our method is tested on the ALARM network and experimental results show that our approach outperforms the other algorithms. 展开更多
关键词 Equivalence equivalence bayesian independence constraint skeleton causal undirected running probabilistic
在线阅读 下载PDF
基于评分缓存的节点序空间下BN结构学习
20
作者 高晓光 闫栩辰 +2 位作者 王紫东 刘晓寒 冯奇 《系统工程与电子技术》 EI CSCD 北大核心 2024年第12期4091-4107,共17页
针对大规模贝叶斯网络结构学习容易陷入局部最优的问题,提出一种节点序空间下迭代局部搜索算法。在局部搜索环节,设计评分缓存的选择插入算子和次优解的容忍策略,评估自适应的纵向插入邻域,攻克由盲目搜索导致的邻域受限问题。在迭代重... 针对大规模贝叶斯网络结构学习容易陷入局部最优的问题,提出一种节点序空间下迭代局部搜索算法。在局部搜索环节,设计评分缓存的选择插入算子和次优解的容忍策略,评估自适应的纵向插入邻域,攻克由盲目搜索导致的邻域受限问题。在迭代重启环节,采用等价类结构和深度优先遍历的转换机制,避免由随机扰动导致的评分退化问题。通过相融实验分别验证搜索和迭代算法的有效性。实验结果表明,相较于现有的主流方法,迭代局部搜索算法能够精确地学习大规模网络结构。 展开更多
关键词 贝叶斯网络 结构学习 节点序 局部搜索 迭代重启
在线阅读 下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部