期刊文献+
共找到151篇文章
< 1 2 8 >
每页显示 20 50 100
融合BiLSTM与CNN的推特黑灰产分类模型
1
作者 朱恩德 王威 高见 《计算机工程与应用》 北大核心 2025年第1期186-195,共10页
当前推特等国外社交平台,已成为从事网络黑灰产犯罪不可或缺的工具,对推特上黑灰产账号进行发现、检测和分类对于打击网络犯罪、维护社会稳定具有重大意义。现有的推文分类模型双向长短时记忆网络(bi-directional long short-term memor... 当前推特等国外社交平台,已成为从事网络黑灰产犯罪不可或缺的工具,对推特上黑灰产账号进行发现、检测和分类对于打击网络犯罪、维护社会稳定具有重大意义。现有的推文分类模型双向长短时记忆网络(bi-directional long short-term memory,BiLSTM)可以学习推文的上下文信息,却无法学习局部关键信息,卷积神经网络(convolution neural network,CNN)模型可以学习推文的局部关键信息,却无法学习推文的上下文信息。结合BiLSTM与CNN两种模型的优势,提出了BiLSTM-CNN推文分类模型,该模型将推文进行向量化后,输入BiLSTM模型学习推文的上下文信息,再在BiLSTM模型后引入CNN层,进行局部特征的提取,最后使用全连接层将经过池化的特征连接在一起,并应用softmax函数进行四分类。模型在自主构建的中文推特黑灰产推文数据集上进行实验,并使用TextCNN、TextRNN、TextRCNN三种分类模型作为对比实验,实验结果显示,所提的BiLSTM-CNN推文分类模型在对四类推文进行分类的宏准确率为98.32%,明显高于TextCNN、TextRNN和TextRCNN三种模型的准确率。 展开更多
关键词 文本分类 双向长短期记忆网络(bilstm) 卷积神经网络(CNN) 黑灰产 推特
在线阅读 下载PDF
基于CNN和BiLSTM的电缆故障自动化定位技术
2
作者 郝磊 《自动化与仪表》 2025年第3期118-121,161,共5页
针对传统的电缆故障诊断难以准确分类和定位的问题,该文在卷积神经网络的基础上引入双向长短时记忆网络,从电缆故障信号中提取关键特征,并利用这些特征对故障类型进行分类和定位,从而提高电缆故障检测的准确性和效率。参数选择实验结果... 针对传统的电缆故障诊断难以准确分类和定位的问题,该文在卷积神经网络的基础上引入双向长短时记忆网络,从电缆故障信号中提取关键特征,并利用这些特征对故障类型进行分类和定位,从而提高电缆故障检测的准确性和效率。参数选择实验结果显示,学习率设为0.01和双向长短时记忆网络层数为4层时模型性能最佳。不同电缆故障定位结果显示,低阻故障的误差最小,在2000 m的距离上,误差仅为5.35 m。实验结果表明,研究建立的基于卷积神经网络-双向长短时记忆网络算法的电缆故障自动化定位模型,有助于提升电力系统的故障应对能力,为现代故障诊断技术的智能化与自动化发展提供参考。 展开更多
关键词 卷积神经网络 双向长短时记忆网络 电缆故障 自动化定位 特征提取
在线阅读 下载PDF
基于IMVMD和BiLSTM-SARIMA组合模型的台区光伏短期发电功率预测
3
作者 李承皓 杨永标 +2 位作者 宋嘉启 张翔颖 徐青山 《太阳能学报》 北大核心 2025年第2期433-440,共8页
针对台区分布式光伏短期发电功率预测精度低的难题,提出一种基于增强型鲸鱼优化算法的多元变分模态分解方法,并结合反向传播神经网络耦合双向长短期记忆网络和季节性差分自回归滑动平均的组合模型,实现台区分布式光伏短期发电功率预测... 针对台区分布式光伏短期发电功率预测精度低的难题,提出一种基于增强型鲸鱼优化算法的多元变分模态分解方法,并结合反向传播神经网络耦合双向长短期记忆网络和季节性差分自回归滑动平均的组合模型,实现台区分布式光伏短期发电功率预测。首先对鲸鱼优化算法的收敛因子、权重等进行改进,然后用它去优化多元变分模态分解方法中的通道数量和惩罚因子,得到最佳分解效果的参数值。再针对与外界气象等因素强相关的光伏发电功率时间序列数据,利用改进多元模态分解将序列最优分解。将分解后的各模态分量输入到单独构建的双向长短期记忆网络和季节性差分自回归滑动平均模型中,获取分量预测值,两个模型得到的分量预测值分别叠加得到各自的完整预测结果。将它们分别乘以权重后相加即为最终预测结果,权重通过反向传播神经网络进行修正。仿真结果说明相比于其他方法,所提模型能有效提高光伏短期发电的预测精度。 展开更多
关键词 模态分解 神经网络 光伏发电 预测 bilstm SARIMA
在线阅读 下载PDF
GWO优化CNN-BiLSTM-Attenion的轴承剩余寿命预测方法 被引量:1
4
作者 李敬一 苏翔 《振动与冲击》 北大核心 2025年第2期321-332,共12页
滚动轴承作为机械设备的重要部件,对其进行剩余使用寿命预测在企业的生产过程中变得越来越重要。目前,虽然主流的卷积神经网络(convolutional neural network, CNN)可以自动地从轴承的振动信号中提取特征,却不能给特征分配不同的权重来... 滚动轴承作为机械设备的重要部件,对其进行剩余使用寿命预测在企业的生产过程中变得越来越重要。目前,虽然主流的卷积神经网络(convolutional neural network, CNN)可以自动地从轴承的振动信号中提取特征,却不能给特征分配不同的权重来提高模型对重要特征的关注程度,对于长时间序列容易丢失重要信息。另外,神经网络中隐藏层神经元个数、学习率以及正则化参数等超参数还需要依靠人工经验设置。为了解决上述问题,提出基于灰狼优化(grey wolf optimizer, GWO)算法、优化集合CNN、双向长短期记忆(bidirectional long short term memory, BiLSTM)网络和注意力机制(Attention)轴承剩余使用寿命预测方法。首先,从原始振动信号中提取时域、频域以及时频域特征指标构建可选特征集;然后,通过构建考虑特征相关性、鲁棒性和单调性的综合评价指标筛选出高于设定阈值的轴承退化敏感特征集,作为预测模型的输入;最后,将预测值和真实值的均方误差作为GWO算法的适应度函数,优化预测模型获得最优隐藏层神经元个数、学习率和正则化参数,利用优化后模型进行剩余使用寿命预测,并在公开数据集上进行验证。结果表明,所提方法可在非经验指导下获得最优的超参数组合,优化后的预测模型与未进行优化模型相比,平均绝对误差与均方根误差分别降低了28.8%和24.3%。 展开更多
关键词 灰狼优化(GWO)算法 卷积神经网络(CNN) 双向长短期记忆(bilstm)网络 自注意力机制 剩余使用寿命预测
在线阅读 下载PDF
基于Hyperband-CNN-BiLSTM模型的车辆油耗预测方法
5
作者 吐尔逊·买买提 孙慧 刘亚楼 《科学技术与工程》 北大核心 2025年第9期3896-3904,共9页
为了有效地预测车辆的燃油消耗,提高燃油经济性并推动节能减排,提出一种基于Hyperband-CNN-BiLSTM的机动车油耗预测方法。首先基于实际道路测试收集到的车辆运行状态数据和油耗数据,分析了影响车辆油耗的显著性因素;其次结合卷积神经网... 为了有效地预测车辆的燃油消耗,提高燃油经济性并推动节能减排,提出一种基于Hyperband-CNN-BiLSTM的机动车油耗预测方法。首先基于实际道路测试收集到的车辆运行状态数据和油耗数据,分析了影响车辆油耗的显著性因素;其次结合卷积神经网络(convolutional neural network,CNN)强大的特征提取能力和双向长短期记忆网络(bidirectional long short-term memory,BiLSTM)在处理时序数据方面的优势,构建了基于CNN-BiLSTM的车辆油耗预测组合模型;然后,为提高模型预测准确性,通过Hyperband优化算法对组合模型进行优化,并将车辆油耗影响因素作为模型输入特征,对模型进行训练,实现对车辆油耗的建模和预测;最后,选取CNN、LSTM、BiLSTM、CNN-LSTM、CNN-BiLSTM作为对比模型,对Hyperband-CNN-BiLSTM预测模型效果进行评价。结果表明,相较于其他模型,Hyperband-CNN-BiLSTM模型的平均绝对误差(mean absolute error,MAE)和均方根误差(root mean squared error,RMSE)最小,分别为0.05769和0.11925,R^(2)最大,为0.99176,模型预测效果最佳。 展开更多
关键词 Hyperband 油耗预测 卷积神经网络(CNN) 双向长短期记忆网络(bilstm) 组合模型
在线阅读 下载PDF
基于小波变换和CNN-BiLSTM的电力电缆故障定位
6
作者 任晶晶 王耀辉 《通信电源技术》 2025年第7期240-242,共3页
文章提出一种基于小波变换和卷积神经网络-双向长短期记忆(Convolutional Neural Network-Bidirectional Long Short Term Memory,CNN-BiLSTM)的电力电缆故障定位算法,结合小波变换的时频局部化特性和CNN与BiLSTM的深度学习能力,以提升... 文章提出一种基于小波变换和卷积神经网络-双向长短期记忆(Convolutional Neural Network-Bidirectional Long Short Term Memory,CNN-BiLSTM)的电力电缆故障定位算法,结合小波变换的时频局部化特性和CNN与BiLSTM的深度学习能力,以提升故障定位的精准性。为验证提出算法的有效性,将True、BiLSTM、极值域均值模式分解(Extremum field Mean Mode Decomposition,EMMD)+小波变换算法与本文算法进行对比实验分析。实验结果表明,基于小波变换和CNN-BiLSTM的电力电缆故障定位算法能够将定位误差控制在0.02 km以内,显著提高了故障定位的精度。 展开更多
关键词 小波变换 卷积神经网络(CNN) 双向长短期记忆(bilstm) 电力电缆故障定位
在线阅读 下载PDF
基于改进DBO优化BiLSTM的IGBT老化预测模型
7
作者 韩素敏 赵国帅 +2 位作者 尚志豪 余悦伟 郭宇 《电子测量技术》 北大核心 2024年第1期46-54,共9页
为了表征逆变器故障中IGBT模块的老化趋势,提高老化过程的预测精度,本文提出一种基于改进蜣螂搜索算法(IDBO)优化双向长短期神经网络(BiLSTM)超参数的IGBT老化预测模型。首先提取老化过程中Vce.on的时频域特征,利用核主成分分析进行降... 为了表征逆变器故障中IGBT模块的老化趋势,提高老化过程的预测精度,本文提出一种基于改进蜣螂搜索算法(IDBO)优化双向长短期神经网络(BiLSTM)超参数的IGBT老化预测模型。首先提取老化过程中Vce.on的时频域特征,利用核主成分分析进行降维构建归一化综合指标。其次,针对蜣螂搜索算法(DBO)的不足,通过引入改进Circle混沌映射、Levy飞行和自适应权重因子提升了DBO寻优能力和收敛性能,利用IDBO对BiLSTM预测模型超参数实现全局寻优。最后,通过实际IGBT退化数据验证了基于IDBO优化BiLSTM老化预测模型的有效性和优越性。结果表明,所构建的IDBO-BiLSTM模型与BiLSTM模型相比RMSE平均下降36.42%、MAE平均下降31.77%、MAPE平均下降41.03%。 展开更多
关键词 蜣螂搜索算法 bilstm神经网络 Levy飞行策略 IGBT 老化预测
在线阅读 下载PDF
基于BERT+CNN_BiLSTM的列控车载设备故障诊断
8
作者 陈永刚 贾水兰 +2 位作者 朱键 韩思成 熊文祥 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2024年第1期120-127,共8页
列控车载设备作为列车运行控制系统核心设备,在高速列车运行过程中发挥着重要作用。目前,其故障诊断仅依赖于现场作业人员经验,诊断效率相对较低。为了实现列控车载设备故障自动诊断并提高诊断效率,提出了BERT+CNN_BiLSTM故障诊断模型... 列控车载设备作为列车运行控制系统核心设备,在高速列车运行过程中发挥着重要作用。目前,其故障诊断仅依赖于现场作业人员经验,诊断效率相对较低。为了实现列控车载设备故障自动诊断并提高诊断效率,提出了BERT+CNN_BiLSTM故障诊断模型。首先,使用来自变换器的双向编码器表征量(Bidirectional encoder representations from transformers,BERT)模型将应用事件日志(Application event log,AElog)转换为计算机能够识别的可以挖掘语义信息的文本向量表示。其次,分别利用卷积神经网络(Convolutional neural network,CNN)和双向长短时记忆网络(Bidirectional long short-term memory,BiLSTM)提取故障特征并进行组合,从而增强空间和时序能力。最后,利用Softmax实现列控车载设备的故障分类与诊断。实验中,选取一列实际运行的列车为研究对象,以运行过程中产生的AElog日志作为实验数据来验证BERT+CNN_BiLSTM模型的性能。与传统机器学习算法、BERT+BiLSTM模型和BERT+CNN模型相比,BERT+CNN_BiLSTM模型的准确率、召回率和F1分别为92.27%、91.03%和91.64%,表明该模型在高速列车控制系统故障诊断中性能优良。 展开更多
关键词 车载设备 故障诊断 来自变换器的双向编码器表征量 应用事件日志 双向长短时记忆网络 卷积神经网络
在线阅读 下载PDF
结合Word2vec和BiLSTM的民航非计划事件分析方法 被引量:1
9
作者 王捷 周迪 +1 位作者 左洪福 黄维 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2024年第7期917-924,共8页
安全是民航业的核心主题。针对目前民航非计划事件分析严重依赖专家经验及分析效率低下的问题,文章提出一种结合Word2vec和双向长短期记忆(bidirectional long short-term memory,BiLSTM)神经网络模型的民航非计划事件分析方法。首先采... 安全是民航业的核心主题。针对目前民航非计划事件分析严重依赖专家经验及分析效率低下的问题,文章提出一种结合Word2vec和双向长短期记忆(bidirectional long short-term memory,BiLSTM)神经网络模型的民航非计划事件分析方法。首先采用Word2vec模型针对事件文本语料进行词向量训练,缩小空间向量维度;然后通过BiLSTM模型自动提取特征,获取事件文本的完整序列信息和上下文特征向量;最后采用softmax函数对民航非计划事件进行分类。实验结果表明,所提出的方法分类效果更好,能达到更优的准确率和F 1值,对不平衡数据样本同样具有较稳定的分类性能,证明了该方法在民航非计划事件分析上的适用性和有效性。 展开更多
关键词 民航安全 文本分析 非计划事件 Word2vec 双向长短期记忆(bilstm)神经网络
在线阅读 下载PDF
基于CNN-BiLSTM的航空发动机滑油流量故障诊断预测方法研究
10
作者 张青 赵洪利 杨佳强 《内燃机与配件》 2024年第8期84-87,共4页
航空发动机滑油系统为整个发动机的传动系统、轴承齿轮等部件提供滑油,是保证航空发动机正常运行的重要系统,因此准确对航空发动机滑油量进行预测是对保证飞机飞行的安全有重要意义的。为了提高预测准确性,提出了一种基于CNN-BiLSTM的... 航空发动机滑油系统为整个发动机的传动系统、轴承齿轮等部件提供滑油,是保证航空发动机正常运行的重要系统,因此准确对航空发动机滑油量进行预测是对保证飞机飞行的安全有重要意义的。为了提高预测准确性,提出了一种基于CNN-BiLSTM的航空发动机滑油流量预测模型,可以同时捕捉数据中的空间特征以及时序关系。以某航QAR数据进行验证,结果与CNN和LSTM模型进行对比,左发预测准确率提升了2.43%和7.85,右发预测准确率提升了7.97%和10.82%,证明了本文所提方法的有效性,为航空发动机滑油流量故障诊断的预测方法提供了新的解决方案。 展开更多
关键词 航空发动机 CNN-bilstm 滑油流量预测 深度神经网络 快速存取(QAR)数据
在线阅读 下载PDF
基于热图像的GWOA-BiLSTM机床主轴热误差预测 被引量:1
11
作者 张婉君 陈瑶 +3 位作者 韩越 吴弘毅 王建臣 邓小雷 《制造技术与机床》 北大核心 2024年第8期175-181,共7页
热误差是影响高精密数控机床加工精度的重要因素。为了提高机床加工精度和性能,减少机床运行中产生的热误差,文章提出一种基于热图像的灰狼优化算法(grey wolf optimization algorithm,GWOA)和双向长短期记忆神经网络(bidirectional lon... 热误差是影响高精密数控机床加工精度的重要因素。为了提高机床加工精度和性能,减少机床运行中产生的热误差,文章提出一种基于热图像的灰狼优化算法(grey wolf optimization algorithm,GWOA)和双向长短期记忆神经网络(bidirectional long short-term memory,BiLSTM)混合的热误差预测模型。首先,采用热成像仪获取机床主轴区域的温度场信息;其次,利用DBSCAN聚类(density-based spatial clustering of applications with noise)算法和相关系数法筛选出温度敏感点;然后,通过模拟灰狼群体捕食行为,在参数空间中进行搜索以找到BiLSTM所需的最优参数;最后,使用获得的机床温度敏感点和热位移数据进行热误差预测,并在试验机床上进行验证。实验结果表明,使用GWOA优化BiLSTM神经网络的预测模型相比BiLSTM神经网络预测模型的均方根误差(root mean square error,RMSE)和平均绝对误差(mean absolute error,MAE)分别减小了约0.5180、0.3823μm,决定系数R^(2)提升了0.0578。与BiLSTM神经网络模型相比,利用GWOA优化后的模型具有更加优良的预测性能。 展开更多
关键词 热图像 灰狼优化算法 bilstm神经网络 热误差建模 机床 测点优化
在线阅读 下载PDF
基于双流CNN-BiLSTM的毫米波雷达人体动作识别方法
12
作者 吴哲夫 闫鑫悦 +2 位作者 施汉银 龚树凤 方路平 《传感技术学报》 CAS CSCD 北大核心 2024年第10期1754-1763,共10页
目前基于雷达的人体动作识别方法,大多是先对人体动作的回波信号进行多维快速傅里叶变换(FFT)得到距离、多普勒和角度等信息,构造各种数据谱图后再输入到神经网络中进行分类识别,数据预处理过程较为复杂。提出了一种双流卷积神经网络(C... 目前基于雷达的人体动作识别方法,大多是先对人体动作的回波信号进行多维快速傅里叶变换(FFT)得到距离、多普勒和角度等信息,构造各种数据谱图后再输入到神经网络中进行分类识别,数据预处理过程较为复杂。提出了一种双流卷积神经网络(CNN)与双向长短时记忆网络(BiLSTM)串联的毫米波雷达人体动作识别方法。首先对原始的雷达回波信号复数采样数据(I/Q)进行帧差处理,以消除静态干扰,并将其转换为幅度/相位(A/P)的数据格式;然后将帧差后的I/Q和A/P数据分别输入单流的CNN-BiLSTM网络,提取人体动作的空间和时间特征,最后进行双流网络的融合以增强特征的交互性,提高识别准确率。实验结果表明,该方法数据预处理简单,并充分利用了动作数据的帧间相关性,模型收敛快,识别准确率可以达到99%,是一种快速有效的人体动作识别方法。 展开更多
关键词 雷达目标识别 人体动作识别 卷积神经网络 双向长短时记忆网络
在线阅读 下载PDF
基于1DCNN-BiLSTM的端到端滚动轴承故障诊断方法 被引量:1
13
作者 徐行 李军星 +1 位作者 贾现召 邱明 《机床与液压》 北大核心 2024年第11期211-218,共8页
针对滚动轴承早期故障诊断时时频域特征选取主观性强、时序特征信息利用不足等问题,提出一种基于卷积神经网络和双向长短时记忆神经网络的滚动轴承早期故障诊断方法。采用卷积神经网络提取原始振动信号特征,并在卷积层后引入批正则化层... 针对滚动轴承早期故障诊断时时频域特征选取主观性强、时序特征信息利用不足等问题,提出一种基于卷积神经网络和双向长短时记忆神经网络的滚动轴承早期故障诊断方法。采用卷积神经网络提取原始振动信号特征,并在卷积层后引入批正则化层,以消除数据的不规则性对权重优化的影响,并通过扩展首层卷积层和调整步长以提高特征提取效率。引入双向长短时记忆神经网络提升卷积神经网络对时序特征的提取能力,通过批正则化层和Dropout层增强模型的鲁棒性和减少神经元与神经元之间的依赖关系。最后,通过滚动轴承试验数据对文中方法进行验证。结果表明:与传统方法相比,文中方法不仅训练速度更快,而且故障诊断准确率也大幅提高。 展开更多
关键词 滚动轴承 故障诊断 卷积神经网络(CNN) 双向长短时记忆神经网络(bilstm)
在线阅读 下载PDF
基于字词向量的BiLSTM-CRF水利工程巡检文本实体识别模型 被引量:3
14
作者 刘雪梅 程彭圣男 +3 位作者 李海瑞 曹闯 高英 崔培 《华北水利水电大学学报(自然科学版)》 北大核心 2024年第3期9-17,共9页
命名实体识别是构建水利知识图谱的核心技术。水利工程巡检文本是水利工程最为常见的数据类型,以文本形式记录,没有固定格式与结构,但其包含水利工程安全潜在风险信息,具有价值密度高的特点。针对水利工程巡检文本命名实体识别问题,提... 命名实体识别是构建水利知识图谱的核心技术。水利工程巡检文本是水利工程最为常见的数据类型,以文本形式记录,没有固定格式与结构,但其包含水利工程安全潜在风险信息,具有价值密度高的特点。针对水利工程巡检文本命名实体识别问题,提出字词向量融合的BiLSTM-CRF模型,首先将巡检文本分别在字维度和词维度进行向量化处理,合并字词向量获取字词向量特征;然后利用BiLSTM神经网络获取序列化后的上下文特征;最后通过CRF进行解码并提取相应实体。以南水北调中线工程巡检文本为例,实验结果表明:字词向量结合之后的方法能有效提高识别性能,对实体边界的识别效果更优,模型准确率、召回率和F1值分别可以达到93.79%、93.06%、93.42%;时间效率较BERT-BiLSTM-CRF模型的时间效率提高82.86%。基于字词向量的BiLSTM-CRF模型可为水利工程知识图谱的快速构建提供技术支撑。 展开更多
关键词 巡检文本 实体识别 双向长短期记忆神经网络 Word2Vec 条件向量场
在线阅读 下载PDF
基于BiLSTM模型的BDS-3短期钟差预报精度研究 被引量:4
15
作者 潘雄 黄伟凯 +3 位作者 赵万卓 张思莹 张龙杰 金丽宏 《测绘学报》 EI CSCD 北大核心 2024年第1期65-78,共14页
提出了一种改进的北斗钟差预测模型,将传统的单向长短期记忆神经网络(LSTM)扩展为双向长短期记忆网络(BiLSTM),引入了3种自适应匹配超参数的算法提高钟差数据短期预报的精度。首先,对LSTM进行优化,建立BiLSTM模型,介绍了超参数的3种选... 提出了一种改进的北斗钟差预测模型,将传统的单向长短期记忆神经网络(LSTM)扩展为双向长短期记忆网络(BiLSTM),引入了3种自适应匹配超参数的算法提高钟差数据短期预报的精度。首先,对LSTM进行优化,建立BiLSTM模型,介绍了超参数的3种选择方案(粒子群搜索(PSO)、麻雀搜索(SSA)和贝叶斯搜索(BOA)),并给出了相应的适用范围。然后,详细介绍基于超参数优化BiLSTM模型的钟差预报的步骤。最后,利用GFZ卫星钟差数据,从不同轨道类型、5 min采样间隔、15 min采样间隔等方面进行了1、6和12 h的单天和多天预报对比试验,并进行了相应模型的时间复杂度分析。试验结果表明,采用超参数方案优化后的BiLSTM模型在进行1、6和12 h预报时,相较于二次多项式模型、灰色模型、长短期记忆神经网络的模型和BiLSTM模型,平均精度可分别提升86.21%、83.32%、69.99%和55.17%。在3种优化方案中,使用PSO算法对IGSO类型卫星的优化效果较好;使用BOA算法对MEO类型卫星的钟差优化效果较好;使用SSA算法在整体上优化效果最好。虽然经过超参数优化后的BiLSTM模型训练时间相对常用模型较长,但预报速度较快,总体上能够满足实时预报时间要求。 展开更多
关键词 钟差预报 bilstm 超参数优化 神经网络
在线阅读 下载PDF
基于CEEMDAN-SE-CNN-BiLSTM模型的大豆期货价格预测 被引量:1
16
作者 周雅丽 谭莹莹 赵玉华 《宁波工程学院学报》 2024年第2期14-20,共7页
为了提高大豆期货价格预测的精确度,综合利用大豆期货市场内外部信息,基于一种“分解—重组—预测—集成”多步期货价格预测模型进行改进。对大豆价格序列进行自适应噪声完备集合经验模态分解(CEEMDAN),得到IMF分量及误差项。筛选后剔... 为了提高大豆期货价格预测的精确度,综合利用大豆期货市场内外部信息,基于一种“分解—重组—预测—集成”多步期货价格预测模型进行改进。对大豆价格序列进行自适应噪声完备集合经验模态分解(CEEMDAN),得到IMF分量及误差项。筛选后剔除与原序列相关系数小的IMF分量,再用样本熵算法(SE)对分解序列进行重组。用优化的CNN-BiLSTM预测模型对重组序列进行预测,集成后得到最终预测值。实证结果表明:在预测大豆期货价格时,改进后的CEEMDAN-SE-CNN-BiLSTM模型普遍优于LSTM、CNN-LSTM等基准农产品期货预测模型。 展开更多
关键词 大豆期货价格预测 自适应噪声完备集合经验模态分解 样本熵 卷积神经网络 双向长短期神经网络
在线阅读 下载PDF
基于MHA-BiLSTM的尾矿坝位移预测
17
作者 杨玉好 杨斌 +2 位作者 胡军 李铭 张壮超 《有色金属工程》 CAS 北大核心 2024年第10期147-157,共11页
尾矿坝变形受多因素影响,针对传统预测方法受到数据复杂性和非线性关系的限制,导致预测精度不足的问题,提出多头注意力机制(Multi-Head Attention)和双向长短时记忆网络(BiLSTM)结合预测尾矿坝位移的方法。在预测中,首先利用Z-score和Sa... 尾矿坝变形受多因素影响,针对传统预测方法受到数据复杂性和非线性关系的限制,导致预测精度不足的问题,提出多头注意力机制(Multi-Head Attention)和双向长短时记忆网络(BiLSTM)结合预测尾矿坝位移的方法。在预测中,首先利用Z-score和Savitzky-Golay滤波对原始数据消除异常值和噪声的干扰;然后,利用灰色关联度方法确定坝体位移影响因素;最后,采用MHA-BiLSTM模型对坝体位移进行预测。以辽宁省某尾矿库实测数据为例,为评估新模型的性能与传统BiLSTM模型进行对比,结果表明该方法能够更准确地预测出坝体位移变化情况。 展开更多
关键词 多头注意力机制 bilstm网络 Z-score去除异常值 Savitzky-Golay滤波 坝体位移预测
在线阅读 下载PDF
基于CEEMD-ITSA-BiLSTM组合模型的短期负荷预测
18
作者 高典 张菁 《电子科技》 2024年第4期30-37,共8页
准确预测电力系统短期负荷有助于灵活规划系统资源、合理安排机组工作调度以及提高系统运行效率。针对负荷预测精度问题,文中提出了一种基于CEEMD-ITSA-BiLSTM(Complete Ensemble Empirical Mode Decomposition-Improved Tunicate Swarm... 准确预测电力系统短期负荷有助于灵活规划系统资源、合理安排机组工作调度以及提高系统运行效率。针对负荷预测精度问题,文中提出了一种基于CEEMD-ITSA-BiLSTM(Complete Ensemble Empirical Mode Decomposition-Improved Tunicate Swarm Algorithm-Bidirectional Long Short-Term Memory)的短期负荷预测模型。对时序性负荷数据进行CEEMD分解,得到若干个平稳的IMF(Intrinsic Mode Function),并对每个IMF进行BiLSTM建模预测。为了提高BiLSTM的精度,采用ITSA算法对BiLSTM的隐含层节点数、学习率和训练次数等超参数进行参数寻优,建立CEEMD-ITSA-BiLSTM负荷预测模型。文中以实际负荷数据进行仿真实验,对比了单一BiLSTM和不同算法优化的BiLSTM模型,结果表明CEEMD-ITSA-BiLSTM模型的RMSE(Root Mean Square Error)、MAE(Mean Absolute Error)和MAPE(Mean Absolute Percentage Error)误差指标相比于BiLSTM模型分别提高了48.54%、51.32%和44.78%,显著低于其他对比模型。 展开更多
关键词 短期负荷预测 预测精度 完全集成经验模态分解 本征模函数 被囊群算法 参数寻优 双向长短期记忆神经网络 误差指标
在线阅读 下载PDF
基于CNN-BiLSTM混合神经网络的雷达信号调制方式识别 被引量:3
19
作者 房崇鑫 盛震宇 +1 位作者 夏明 周慧成 《无线电工程》 2024年第6期1440-1445,共6页
针对具有时频特性的雷达信号,传统的雷达信号识别方法已经无法满足对信号类型精准识别的需求,因此需要通过采集并分析雷达信号脉内的时频特征实现对目标雷达的具体信息进行有效评估。设计了一种卷积-双向长短时记忆(Convolution-Bidirec... 针对具有时频特性的雷达信号,传统的雷达信号识别方法已经无法满足对信号类型精准识别的需求,因此需要通过采集并分析雷达信号脉内的时频特征实现对目标雷达的具体信息进行有效评估。设计了一种卷积-双向长短时记忆(Convolution-Bidirectional Long Short-Term Memory,CNN-BiLSTM)混合神经网络模型,主要通过BiLSTM的时序记忆特性深度挖掘雷达信号的时域特征,结合权值共享特性和CNN层捕获雷达信号的时频特征,再利用二者信号特征联合完成对雷达信号调制方式的识别。通过对比实验验证,所提方法对若干种雷达信号的识别具有较高的准确度,平均值达到95.349%;优于只使用单一特征的网络和传统算法,具有良好的抗噪声能力。 展开更多
关键词 深度学习 卷积-双向长短时记忆混合神经网络 雷达信号调制识别
在线阅读 下载PDF
基于DBO-VMD和IWOA-BILSTM神经网络组合模型的短期电力负荷预测 被引量:9
20
作者 刘杰 从兰美 +3 位作者 夏远洋 潘广源 赵汉超 韩子月 《电力系统保护与控制》 EI CSCD 北大核心 2024年第8期123-133,共11页
新能源在现代电力系统中占比不断提高,其负荷不规律性、波动性远大于传统电力系统,这就导致负荷预测精度不高。针对这个问题,提出了蜣螂优化(dung beetle optimizer,DBO)算法优化变分模态分解(variational mode decomposition,VMD)与改... 新能源在现代电力系统中占比不断提高,其负荷不规律性、波动性远大于传统电力系统,这就导致负荷预测精度不高。针对这个问题,提出了蜣螂优化(dung beetle optimizer,DBO)算法优化变分模态分解(variational mode decomposition,VMD)与改进鲸鱼优化算法优化双向长短期记忆(improved whale optimization algorithm-bidirectional long short-term memory,IWOA-BILSTM)神经网络相结合的短期负荷预测模型。首先利用DBO优化VMD,分解时间序列数据,并根据最小包络熵对各种特征数据进行分类,增强了分解效果。通过对原始数据进行有效分解,降低了数据的波动性。然后使用非线性收敛因子、自适应权重策略与随机差分法变异策略增强鲸鱼优化算法的局部及全局搜索能力得到改进鲸鱼优化算法(improved whale optimization algorithm,IWOA),并用于优化双向长短期记忆(bidirectional long short-term memory,BILSTM)神经网络,增加了模型预测的精确度。最后将所提方法应用于某地真实的负荷数据,得到最终相对均方根误差、平均绝对误差和平均绝对百分比误差分别为0.0084、48.09、0.66%,证明了提出的模型对于短期负荷预测的有效性。 展开更多
关键词 蜣螂优化算法 VMD 改进鲸鱼算法 短期电力负荷预测 双向长短期记忆神经网络 组合算法
在线阅读 下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部