期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Non-Intrusive Load Identification Model Based on 3D Spatial Feature and Convolutional Neural Network 被引量:1
1
作者 Jiangyong Liu Ning Liu +3 位作者 Huina Song Ximeng Liu Xingen Sun Dake Zhang 《Energy and Power Engineering》 2021年第4期30-40,共11页
<div style="text-align:justify;"> Load identification method is one of the major technical difficulties of non-intrusive composite monitoring. Binary V-I trajectory image can reflect the original V-I t... <div style="text-align:justify;"> Load identification method is one of the major technical difficulties of non-intrusive composite monitoring. Binary V-I trajectory image can reflect the original V-I trajectory characteristics to a large extent, so it is widely used in load identification. However, using single binary V-I trajectory feature for load identification has certain limitations. In order to improve the accuracy of load identification, the power feature is added on the basis of the binary V-I trajectory feature in this paper. We change the initial binary V-I trajectory into a new 3D feature by mapping the power feature to the third dimension. In order to reduce the impact of imbalance samples on load identification, the SVM SMOTE algorithm is used to balance the samples. Based on the deep learning method, the convolutional neural network model is used to extract the newly produced 3D feature to achieve load identification in this paper. The results indicate the new 3D feature has better observability and the proposed model has higher identification performance compared with other classification models on the public data set PLAID. </div> 展开更多
关键词 Non-Intrusive Load Identification binary v-i trajectory feature Three-Dimensional feature Convolutional Neural Network Deep Learning
在线阅读 下载PDF
基于速度增长的微博热点话题发现 被引量:17
2
作者 薛素芝 鲁燃 任圆圆 《计算机应用研究》 CSCD 北大核心 2013年第9期2598-2601,共4页
在微博热点话题发现中,由于微博文本短、词量少、用词不规范等特征,使得传统的热点话题检测方法力不从心。针对这一问题,提出了基于速度增长的微博热点话题发现方法。首先把经过预处理的微博按等数量窗口划分,统计每个窗口内各词语的词... 在微博热点话题发现中,由于微博文本短、词量少、用词不规范等特征,使得传统的热点话题检测方法力不从心。针对这一问题,提出了基于速度增长的微博热点话题发现方法。首先把经过预处理的微博按等数量窗口划分,统计每个窗口内各词语的词频,并表示成时间二元组序列;然后通过计算每相邻两个窗口的个词语的增长斜率来发现增长速度快的词语;再通过计算与该词语有关的用户的增长速度和微博条数的增长速度来确定该词语是否是热点主题词;最后通过热点主题词聚类产生热点话题。通过实验验证了该方法的可行性。实验结果表明,该方法在一定程度上提高了检测效率,降低了漏检率和误检率,可以有效地及时发现微博热点话题。 展开更多
关键词 增长斜率 增长速度 时间二元组序列 热点发现
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部