期刊文献+
共找到43篇文章
< 1 2 3 >
每页显示 20 50 100
A Fixed Suppressed Rate Selection Method for Suppressed Fuzzy C-Means Clustering Algorithm 被引量:2
1
作者 Jiulun Fan Jing Li 《Applied Mathematics》 2014年第8期1275-1283,共9页
Suppressed fuzzy c-means (S-FCM) clustering algorithm with the intention of combining the higher speed of hard c-means clustering algorithm and the better classification performance of fuzzy c-means clustering algorit... Suppressed fuzzy c-means (S-FCM) clustering algorithm with the intention of combining the higher speed of hard c-means clustering algorithm and the better classification performance of fuzzy c-means clustering algorithm had been studied by many researchers and applied in many fields. In the algorithm, how to select the suppressed rate is a key step. In this paper, we give a method to select the fixed suppressed rate by the structure of the data itself. The experimental results show that the proposed method is a suitable way to select the suppressed rate in suppressed fuzzy c-means clustering algorithm. 展开更多
关键词 HARD c-meanS CLUSTERING algorithm FUZZY c-meanS CLUSTERING algorithm Suppressed FUZZY c-meanS CLUSTERING algorithm Suppressed RATE
在线阅读 下载PDF
Distributed C-Means Algorithm for Big Data Image Segmentation on a Massively Parallel and Distributed Virtual Machine Based on Cooperative Mobile Agents
2
作者 Fatéma Zahra Benchara Mohamed Youssfi +2 位作者 Omar Bouattane Hassan Ouajji Mohammed Ouadi Bensalah 《Journal of Software Engineering and Applications》 2015年第3期103-113,共11页
The aim of this paper is to present a distributed algorithm for big data classification, and its application for Magnetic Resonance Images (MRI) segmentation. We choose the well-known classification method which is th... The aim of this paper is to present a distributed algorithm for big data classification, and its application for Magnetic Resonance Images (MRI) segmentation. We choose the well-known classification method which is the c-means method. The proposed method is introduced in order to perform a cognitive program which is assigned to be implemented on a parallel and distributed machine based on mobile agents. The main idea of the proposed algorithm is to execute the c-means classification procedure by the Mobile Classification Agents (Team Workers) on different nodes on their data at the same time and provide the results to their Mobile Host Agent (Team Leader) which computes the global results and orchestrates the classification until the convergence condition is achieved and the output segmented images will be provided from the Mobile Classification Agents. The data in our case are the big data MRI image of size (m × n) which is splitted into (m × n) elementary images one per mobile classification agent to perform the classification procedure. The experimental results show that the use of the distributed architecture improves significantly the big data segmentation efficiency. 展开更多
关键词 Multi-Agent System DISTRIBUTED algorithm BIG Data IMAGE Segmentation MRI IMAGE c-meanS algorithm Mobile Agent
在线阅读 下载PDF
Agent Based Segmentation of the MRI Brain Using a Robust C-Means Algorithm
3
作者 Hanane Barrah Abdeljabbar Cherkaoui Driss Sarsri 《Journal of Computer and Communications》 2016年第10期13-21,共9页
In the last decade, the MRI (Magnetic Resonance Imaging) image segmentation has become one of the most active research fields in the medical imaging domain. Because of the fuzzy nature of the MRI images, many research... In the last decade, the MRI (Magnetic Resonance Imaging) image segmentation has become one of the most active research fields in the medical imaging domain. Because of the fuzzy nature of the MRI images, many researchers have adopted the fuzzy clustering approach to segment them. In this work, a fast and robust multi-agent system (MAS) for MRI segmentation of the brain is proposed. This system gets its robustness from a robust c-means algorithm (RFCM) and obtains its fastness from the beneficial properties of agents, such as autonomy, social ability and reactivity. To show the efficiency of the proposed method, we test it on a normal brain brought from the BrainWeb Simulated Brain Database. The experimental results are valuable in both robustness to noise and running times standpoints. 展开更多
关键词 Agents and MAS MR Images Fuzzy Clustering c-means algorithm Image Segmentation
在线阅读 下载PDF
Hybrid Clustering Using Firefly Optimization and Fuzzy C-Means Algorithm
4
作者 Krishnamoorthi Murugasamy Kalamani Murugasamy 《Circuits and Systems》 2016年第9期2339-2348,共10页
Classifying the data into a meaningful group is one of the fundamental ways of understanding and learning the valuable information. High-quality clustering methods are necessary for the valuable and efficient analysis... Classifying the data into a meaningful group is one of the fundamental ways of understanding and learning the valuable information. High-quality clustering methods are necessary for the valuable and efficient analysis of the increasing data. The Firefly Algorithm (FA) is one of the bio-inspired algorithms and it is recently used to solve the clustering problems. In this paper, Hybrid F-Firefly algorithm is developed by combining the Fuzzy C-Means (FCM) with FA to improve the clustering accuracy with global optimum solution. The Hybrid F-Firefly algorithm is developed by incorporating FCM operator at the end of each iteration in FA algorithm. This proposed algorithm is designed to utilize the goodness of existing algorithm and to enhance the original FA algorithm by solving the shortcomings in the FCM algorithm like the trapping in local optima and sensitive to initial seed points. In this research work, the Hybrid F-Firefly algorithm is implemented and experimentally tested for various performance measures under six different benchmark datasets. From the experimental results, it is observed that the Hybrid F-Firefly algorithm significantly improves the intra-cluster distance when compared with the existing algorithms like K-means, FCM and FA algorithm. 展开更多
关键词 CLUSTERING OPTIMIZATION K-MEANS Fuzzy c-means Firefly algorithm F-Firefly
在线阅读 下载PDF
Substation clustering based on improved KFCM algorithm with adaptive optimal clustering number selection 被引量:1
5
作者 Yanhui Xu Yihao Gao +4 位作者 Yundan Cheng Yuhang Sun Xuesong Li Xianxian Pan Hao Yu 《Global Energy Interconnection》 EI CSCD 2023年第4期505-516,共12页
The premise and basis of load modeling are substation load composition inquiries and cluster analyses.However,the traditional kernel fuzzy C-means(KFCM)algorithm is limited by artificial clustering number selection an... The premise and basis of load modeling are substation load composition inquiries and cluster analyses.However,the traditional kernel fuzzy C-means(KFCM)algorithm is limited by artificial clustering number selection and its convergence to local optimal solutions.To overcome these limitations,an improved KFCM algorithm with adaptive optimal clustering number selection is proposed in this paper.This algorithm optimizes the KFCM algorithm by combining the powerful global search ability of genetic algorithm and the robust local search ability of simulated annealing algorithm.The improved KFCM algorithm adaptively determines the ideal number of clusters using the clustering evaluation index ratio.Compared with the traditional KFCM algorithm,the enhanced KFCM algorithm has robust clustering and comprehensive abilities,enabling the efficient convergence to the global optimal solution. 展开更多
关键词 Load substation clustering Simulated annealing genetic algorithm Kernel fuzzy c-means algorithm Clustering evaluation
在线阅读 下载PDF
Alternative Fuzzy Cluster Segmentation of Remote Sensing Images Based on Adaptive Genetic Algorithm 被引量:1
6
作者 WANG Jing TANG Jilong +3 位作者 LIU Jibin REN Chunying LIU Xiangnan FENG Jiang 《Chinese Geographical Science》 SCIE CSCD 2009年第1期83-88,共6页
Remote sensing image segmentation is the basis of image understanding and analysis. However,the precision and the speed of segmentation can not meet the need of image analysis,due to strong uncertainty and rich textur... Remote sensing image segmentation is the basis of image understanding and analysis. However,the precision and the speed of segmentation can not meet the need of image analysis,due to strong uncertainty and rich texture details of remote sensing images. We proposed a new segmentation method based on Adaptive Genetic Algorithm(AGA) and Alternative Fuzzy C-Means(AFCM) . Segmentation thresholds were identified by AGA. Then the image was segmented by AFCM. The results indicate that the precision and the speed of segmentation have been greatly increased,and the accuracy of threshold selection is much higher compared with traditional Otsu and Fuzzy C-Means(FCM) segmentation methods. The segmentation results also show that multi-thresholds segmentation has been achieved by combining AGA with AFCM. 展开更多
关键词 Adaptive Genetic algorithm (AGA) Alternative Fuzzy c-means (AFCM) image segmentation remote sensing
在线阅读 下载PDF
Automatic DNA sequencing for electrophoresis gels using image processing algorithms 被引量:1
7
作者 Jiann-Der Lee Chung-Hsien Huang +1 位作者 Neng-Wei Wang Chin-Song Lu 《Journal of Biomedical Science and Engineering》 2011年第8期523-528,共6页
DNA electrophoresis gel is an important biologically experimental technique and DNA sequencing can be defined by it. Traditionally, it is time consuming for biologists to exam the gel images by their eyes and often ha... DNA electrophoresis gel is an important biologically experimental technique and DNA sequencing can be defined by it. Traditionally, it is time consuming for biologists to exam the gel images by their eyes and often has human errors during the process. Therefore, automatic analysis of the gel image could provide more information that is usually ignored by human expert. However, basic tasks such as the identification of lanes in a gel image, easily done by human experts, emerge as problems that may be difficult to be executed automatically. In this paper, we design an automatic procedure to analyze DNA gel images using various image processing algorithms. Firstly, we employ an enhanced fuzzy c-means algorithm to extract the useful information from DNA gel images and exclude the undesired background. Then, Gaussian function is utilized to estimate the location of each lane of A, T, C, and G on the gels images automatically. Finally, the location of each band on the gel image can be detected accurately by tracing lanes, renewing lost bands, and eliminating repetitive bands. 展开更多
关键词 DNA SEQUENCING FUZZY c-meanS algorithm
在线阅读 下载PDF
A NEW UNSUPERVISED CLASSIFICATION ALGORITHM FOR POLARIMETRIC SAR IMAGES BASED ON FUZZY SET THEORY 被引量:2
8
作者 Fu Yusheng Xie Yan Pi Yiming Hou Yinming 《Journal of Electronics(China)》 2006年第4期598-601,共4页
In this letter, a new method is proposed for unsupervised classification of terrain types and man-made objects using POLarimetric Synthetic Aperture Radar (POLSAR) data. This technique is a combi-nation of the usage o... In this letter, a new method is proposed for unsupervised classification of terrain types and man-made objects using POLarimetric Synthetic Aperture Radar (POLSAR) data. This technique is a combi-nation of the usage of polarimetric information of SAR images and the unsupervised classification method based on fuzzy set theory. Image quantization and image enhancement are used to preprocess the POLSAR data. Then the polarimetric information and Fuzzy C-Means (FCM) clustering algorithm are used to classify the preprocessed images. The advantages of this algorithm are the automated classification, its high classifica-tion accuracy, fast convergence and high stability. The effectiveness of this algorithm is demonstrated by ex-periments using SIR-C/X-SAR (Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar) data. 展开更多
关键词 Radar polarimetry Synthetic Aperture Radar (SAR) Fuzzy set theory Unsupervised classification Image quantization Image enhancement Fuzzy c-means (FCM) clustering algorithm Membership function
在线阅读 下载PDF
Employment Quality EvaluationModel Based on Hybrid Intelligent Algorithm
9
作者 Xianhui Gu Xiaokan Wang Shuang Liang 《Computers, Materials & Continua》 SCIE EI 2023年第1期131-139,共9页
In order to solve the defect of large error in current employment quality evaluation,an employment quality evaluation model based on grey correlation degree method and fuzzy C-means(FCM)is proposed.Firstly,it analyzes... In order to solve the defect of large error in current employment quality evaluation,an employment quality evaluation model based on grey correlation degree method and fuzzy C-means(FCM)is proposed.Firstly,it analyzes the related research work of employment quality evaluation,establishes the employment quality evaluation index system,collects the index data,and normalizes the index data;Then,the weight value of employment quality evaluation index is determined by Grey relational analysis method,and some unimportant indexes are removed;Finally,the employment quality evaluation model is established by using fuzzy cluster analysis algorithm,and compared with other employment quality evaluation models.The test results show that the employment quality evaluation accuracy of the design model exceeds 93%,the employment quality evaluation error can meet the requirements of practical application,and the employment quality evaluation effect is much better than the comparison model.The comparison test verifies the superiority of the model. 展开更多
关键词 Employment quality fuzzy c-means clustering algorithm grey correlation analysis method evaluation model index system comparative test
在线阅读 下载PDF
Semi-supervised kernel FCM algorithm for remote sensing image classification
10
作者 刘小芳 HeBinbin LiXiaowen 《High Technology Letters》 EI CAS 2011年第4期427-432,共6页
These problems of nonlinearity, fuzziness and few labeled data were rarely considered in traditional remote sensing image classification. A semi-supervised kernel fuzzy C-means (SSKFCM) algorithm is proposed to over... These problems of nonlinearity, fuzziness and few labeled data were rarely considered in traditional remote sensing image classification. A semi-supervised kernel fuzzy C-means (SSKFCM) algorithm is proposed to overcome these disadvantages of remote sensing image classification in this paper. The SSKFCM algorithm is achieved by introducing a kernel method and semi-supervised learning technique into the standard fuzzy C-means (FCM) algorithm. A set of Beijing-1 micro-satellite's multispectral images are adopted to be classified by several algorithms, such as FCM, kernel FCM (KFCM), semi-supervised FCM (SSFCM) and SSKFCM. The classification results are estimated by corresponding indexes. The results indicate that the SSKFCM algorithm significantly improves the classification accuracy of remote sensing images compared with the others. 展开更多
关键词 remote sensing image classification semi-supervised kernel fuzzy c-means (SSKFCM)algorithm Beijing-1 micro-satellite semi-supcrvisod learning tochnique kernel method
在线阅读 下载PDF
基于课堂教学会话语料库的发言者分类算法研究
11
作者 王娜 刘魏娜 《自动化技术与应用》 2024年第6期78-81,共4页
为实现针对课堂教学语音数据内容的准确分类,提出一套基于GMM和UBM的双重聚类发言者分类识别算法。根据课堂教学活动师生发言不均衡的特点,制定专门的双重聚类处理方案,并通过课堂发言实录语音数据对该算法进行应用实验。经实验研究发现... 为实现针对课堂教学语音数据内容的准确分类,提出一套基于GMM和UBM的双重聚类发言者分类识别算法。根据课堂教学活动师生发言不均衡的特点,制定专门的双重聚类处理方案,并通过课堂发言实录语音数据对该算法进行应用实验。经实验研究发现,所提出的GMM-UBM的双重聚类算法相比于单纯GMM来说能够更加准确地对发言者进行识别与分类,具有一定的应用价值。 展开更多
关键词 发言者分类算法 课堂教学 会话语料库 聚类
在线阅读 下载PDF
基于离散余弦变换和聚类算法的遥感图像融合 被引量:5
12
作者 赵大一 刘雪峰 +2 位作者 霍丙全 李国新 邵敏 《微计算机信息》 北大核心 2006年第05X期234-236,共3页
本文将二维离散余弦变换(DCT)应用于多光谱图像与全色光学图像融合问题的研究中。首先,对全色光学图像和多光谱图像的亮度分量(Y)作DCT变换;根据变换矩阵DCT系数分布特点,对DCT系数进行聚类,通过统计不同类的DCT系数的数目,将DCT变换矩... 本文将二维离散余弦变换(DCT)应用于多光谱图像与全色光学图像融合问题的研究中。首先,对全色光学图像和多光谱图像的亮度分量(Y)作DCT变换;根据变换矩阵DCT系数分布特点,对DCT系数进行聚类,通过统计不同类的DCT系数的数目,将DCT变换矩阵分为低频分量和高频分量;用Y分量的低频分量代替全色光学图像的低频分量,保留全色光学图像的高频分量,反DCT变换,得到最终的融合结果。实验表明,融合图像在空间细节信息的表现能力和光谱特性保持性能上均是比较优良的,说明该方法是可行有效的。 展开更多
关键词 图像融合 多光谱图像 全色光学图像 DCT变换 C-均值聚类算法
在线阅读 下载PDF
基于资源签名与遗传算法的Hadoop参数自动调优系统 被引量:5
13
作者 马跃 余骋远 于碧辉 《计算机应用研究》 CSCD 北大核心 2017年第11期3219-3222,3228,共5页
在Hadoop集群的优化配置中,配置参数存在种类繁多、含义复杂、相互关联影响的特性,导致难以实现快速准确寻优。针对以上问题,构建了Hadoop集群自动调优系统,其中在系统中设计了资源获取器与参数配置库,分别用于获取各作业的资源消耗与... 在Hadoop集群的优化配置中,配置参数存在种类繁多、含义复杂、相互关联影响的特性,导致难以实现快速准确寻优。针对以上问题,构建了Hadoop集群自动调优系统,其中在系统中设计了资源获取器与参数配置库,分别用于获取各作业的资源消耗与存储分发配置方案。该系统利用MapReduce作业的小规模数据集资源签名将任务分类,在遗传算法框架中通过任务的测试评估对配置方案进行自动迭代优化。实验结果表明,调优后集群的任务完成时间明显缩减,集群的资源利用率有了明显提升。 展开更多
关键词 HADOOP集群 资源签名 遗传算法 参数配置 自动调优
在线阅读 下载PDF
面向政策法规数据的分类方法 被引量:3
14
作者 苏变萍 侯筱婷 《微电子学与计算机》 CSCD 北大核心 2008年第7期166-168,172,共4页
通过设计阀值、构造类别的基向量和待分类向量的复数指标,建立了面向政策法规数据的适于有效机器学习的实时动态可扩展的分类方法.改进了文档的自动分类多采用以类别为中心的分类模式,综合了以文档为中心和以类别为中心两种分类模式的优... 通过设计阀值、构造类别的基向量和待分类向量的复数指标,建立了面向政策法规数据的适于有效机器学习的实时动态可扩展的分类方法.改进了文档的自动分类多采用以类别为中心的分类模式,综合了以文档为中心和以类别为中心两种分类模式的优点,实现了一次性完成单标号分类和多标号分类问题,克服了以往分类中预先定义主题类别和聚类分类中预先指定类别的种数的缺陷.编制了相应的算法. 展开更多
关键词 文本挖掘 分类 模型 算法
在线阅读 下载PDF
基于MANET的分簇算法研究 被引量:2
15
作者 邓朝晖 陶洋 +1 位作者 周东 苟光磊 《重庆工学院学报》 2007年第5期46-49,共4页
分簇是一种能将节点分成逻辑上独立的组的机制,在MANET中应用分簇算法得到的分级式结构能提高网络的总体性能.介绍了分簇算法的构成和度量分簇算法性能优劣的标准,并对几类典型的分簇算法进行了分析和比较,最后指出了其中存在的问题.
关键词 MANET 分簇算法 被动分簇
在线阅读 下载PDF
改进最近邻法在基于CBR的自动武器设计系统中的应用 被引量:7
16
作者 胡良明 《制造业自动化》 北大核心 2008年第11期93-95,共3页
实例检索是基于实例产品设计的关键,最近邻法是常用的一种检索算法。但随着实例库的增大,这种算法检索的效率会大大降低。文章结合基于CBR的自动武器设计系统的特点,提出了一种改进的算法。采用聚类的方法把实例库分为合理的聚类,并找... 实例检索是基于实例产品设计的关键,最近邻法是常用的一种检索算法。但随着实例库的增大,这种算法检索的效率会大大降低。文章结合基于CBR的自动武器设计系统的特点,提出了一种改进的算法。采用聚类的方法把实例库分为合理的聚类,并找到每个聚类的均值,然后在推理中,新实例直接与每个均值进行比较,找到与它最相近的聚类,并在这个聚类中搜索最相近的实例。避免了盲目搜索,优化了算法。 展开更多
关键词 最近邻法 实例推理 聚类算法 自动武器设计
在线阅读 下载PDF
一种改进的关联规则挖掘算法 被引量:1
17
作者 陈琦 刘蓉 +1 位作者 周茉 罗强 《计算机与数字工程》 2006年第8期28-30,93,共4页
提出了一种基于聚类的挖掘关联规则Apriori改进算法,该算法只需扫描一次事务数据库,直接按事务项数生成聚类表,每次只需扫描部分聚类表就可生成频繁项集,减少了扫描数据库的次数和计算成本,从而有效提高挖掘关联规则的效率。
关键词 关联规则 算法 聚类
在线阅读 下载PDF
一种改进的集群动态负载均衡算法 被引量:12
18
作者 周松泉 《计算机与现代化》 2012年第1期135-139,共5页
在集群系统的研究中,负载均衡算法是一个重要的方向,因为它关系到多台服务器在整合成一个集群系统后能否很好地相互协作,以更好地完成用户交予的任务。为实现上述目的,本文在分析已有的负载均衡算法基础上,提出一种改进的能够实时收集... 在集群系统的研究中,负载均衡算法是一个重要的方向,因为它关系到多台服务器在整合成一个集群系统后能否很好地相互协作,以更好地完成用户交予的任务。为实现上述目的,本文在分析已有的负载均衡算法基础上,提出一种改进的能够实时收集服务器负载指标,进而动态地计算出服务器在分配用户连接中的权重的方法。测试结果表明,该方法能够有效地防止服务器倾斜,达到良好的负载均衡效果。 展开更多
关键词 集群 负载均衡 动态调度算法
在线阅读 下载PDF
改进遗传算法在模糊文本聚类中的应用研究 被引量:1
19
作者 时念云 蒋红芬 徐九韵 《科学技术与工程》 2005年第24期1898-1902,共5页
在分析了传统模糊聚类FCM算法和基于遗传聚类算法优点和不足的基础上,提出了一种基于免疫单亲遗传和模糊C均值的改进遗传聚类算法,克服了FCM的局部最优问题以及标准遗传算法聚类时的搜索速度和聚类精度的矛盾,并将该算法用于文本聚类,... 在分析了传统模糊聚类FCM算法和基于遗传聚类算法优点和不足的基础上,提出了一种基于免疫单亲遗传和模糊C均值的改进遗传聚类算法,克服了FCM的局部最优问题以及标准遗传算法聚类时的搜索速度和聚类精度的矛盾,并将该算法用于文本聚类,实验表明该算法是有效的。 展开更多
关键词 聚类分析FCM 遗传算法 免疫机制 文本聚类
在线阅读 下载PDF
一种多簇头的Ad Hoc分簇算法 被引量:2
20
作者 王群 李德敏 陈延伟 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第A02期144-146,共3页
随着个人无线通讯设备的发展,Ad hoc网络已经成为网络发展的趋势.分簇算法作为一种划分网络结构的方法,有着重要的意义.本文提出了一种Ad hoc网络的分簇方法:首先,基于地理位置信息将网络划分成网格,每个网格为一个簇.其次,规定网格中... 随着个人无线通讯设备的发展,Ad hoc网络已经成为网络发展的趋势.分簇算法作为一种划分网络结构的方法,有着重要的意义.本文提出了一种Ad hoc网络的分簇方法:首先,基于地理位置信息将网络划分成网格,每个网格为一个簇.其次,规定网格中的某区域为簇首生成区,每个簇生成多个簇首,即一个簇由多个簇头生成的三层树结构组成.文中对簇头个数的确定以及节点在簇与簇之间移动时产生的信息开销进行了计算,并给出了仿真结果. 展开更多
关键词 AD HOC 分簇算法 簇头
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部