The murine microglial cell line BV2 has neuroprotective effects, but is toxic to neurons by secret-ing inlfammatory cytokines, and is an important target in the treatment of nerve inlfammation and neurodegenerative di...The murine microglial cell line BV2 has neuroprotective effects, but is toxic to neurons by secret-ing inlfammatory cytokines, and is an important target in the treatment of nerve inlfammation and neurodegenerative diseases. In the present study, we observed the effects of transfecting three amyloid precursor-like protein 2 (APLP2) C-terminal fragments (CTFs; C57, C50 and C31) in the pEGFP-N1 vector on S100A9 expression in BV2 cells. Reverse transcription-PCR, western blot assay and immunocytochemistry revealed that S100A9 protein and mRNA expression was greater in BV2 cells after CTF transfection than after mock transfection with an empty vector. Furthermore, transfection of full-length APLP2-751 resulted in low levels of S100A9 protein ex-pression. Our results show that APLP2-CTFs upregulate S100A9 protein and mRNA expression in BV2 cells, and identify a novel pathway involved in neuronal injury and apoptosis, and repair and protection in Alzheimer’s disease.展开更多
This paper proposes an efficient strategy for resource utilization in Elastic Optical Networks (EONs) to minimize spectrum fragmentation and reduce connection blocking probability during Routing and Spectrum Allocatio...This paper proposes an efficient strategy for resource utilization in Elastic Optical Networks (EONs) to minimize spectrum fragmentation and reduce connection blocking probability during Routing and Spectrum Allocation (RSA). The proposed method, Dynamic Threshold-Based Routing and Spectrum Allocation with Fragmentation Awareness (DT-RSAF), integrates rerouting and spectrum defragmentation as needed. By leveraging Yen’s shortest path algorithm, DT-RSAF enhances resource utilization while ensuring improved service continuity. A dynamic threshold mechanism enables the algorithm to adapt to varying network conditions, while its fragmentation awareness effectively mitigates spectrum fragmentation. Simulation results on NSFNET and COST 239 topologies demonstrate that DT-RSAF significantly outperforms methods such as K-Shortest Path Routing and Spectrum Allocation (KSP-RSA), Load Balanced and Fragmentation-Aware (LBFA), and the Invasive Weed Optimization-based RSA (IWO-RSA). Under heavy traffic, DT-RSAF reduces the blocking probability by up to 15% and achieves lower Bandwidth Fragmentation Ratios (BFR), ranging from 74% to 75%, compared to 77% - 80% for KSP-RSA, 75% - 77% for LBFA, and approximately 76% for IWO-RSA. DT-RSAF also demonstrated reasonable computation times compared to KSP-RSA, LBFA, and IWO-RSA. On a small-sized network, its computation time was 8710 times faster than that of Integer Linear Programming (ILP) on the same network topology. Additionally, it achieved a similar execution time to LBFA and outperformed IWO-RSA in terms of efficiency. These results highlight DT-RSAF’s capability to maintain large contiguous frequency blocks, making it highly effective for accommodating high-bandwidth requests in EONs while maintaining reasonable execution times.展开更多
We investigate distinct non-Hermitian skin effects(NHSEs)in real and Fock spaces induced by the interplay between the Hilbert space fragmentation and multiple non-Hermitian pumping channels.Using an extended Hatano–N...We investigate distinct non-Hermitian skin effects(NHSEs)in real and Fock spaces induced by the interplay between the Hilbert space fragmentation and multiple non-Hermitian pumping channels.Using an extended Hatano–Nelson model with next-nearest neighbor hopping and strong interaction as an example,we found that two fermions loaded in the lattice exhibit different real-space NHSE depending on the Hilbert space fragments to which they belong.Moreover,in the high-energy sector resulting from fragmentation,the two-particle-bound states form a one-dimensional lattice in Fock space,producing a Fock-space NHSE.At half-filling,richer patterns of Fock-space skin-like localization emerge for the different fragmented energy sectors and subsectors while realspace NHSE is suppressed by many-body effects.This study extends our understanding of the interplay between NHSE and Hilbert space fragmentation and provides detailed insights into their manifestation in interacting non-Hermitian systems.展开更多
This study presents a machine learning-based method for predicting fragment velocity distribution in warhead fragmentation under explosive loading condition.The fragment resultant velocities are correlated with key de...This study presents a machine learning-based method for predicting fragment velocity distribution in warhead fragmentation under explosive loading condition.The fragment resultant velocities are correlated with key design parameters including casing dimensions and detonation positions.The paper details the finite element analysis for fragmentation,the characterizations of the dynamic hardening and fracture models,the generation of comprehensive datasets,and the training of the ANN model.The results show the influence of casing dimensions on fragment velocity distributions,with the tendencies indicating increased resultant velocity with reduced thickness,increased length and diameter.The model's predictive capability is demonstrated through the accurate predictions for both training and testing datasets,showing its potential for the real-time prediction of fragmentation performance.展开更多
Rock fragmentation is an important indicator for assessing the quality of blasting operations.However,accurate prediction of rock fragmentation after blasting is challenging due to the complicated blasting parameters ...Rock fragmentation is an important indicator for assessing the quality of blasting operations.However,accurate prediction of rock fragmentation after blasting is challenging due to the complicated blasting parameters and rock properties.For this reason,optimized by the Bayesian optimization algorithm(BOA),four hybrid machine learning models,including random forest,adaptive boosting,gradient boosting,and extremely randomized trees,were developed in this study.A total of 102 data sets with seven input parameters(spacing-to-burden ratio,hole depth-to-burden ratio,burden-to-hole diameter ratio,stemming length-to-burden ratio,powder factor,in situ block size,and elastic modulus)and one output parameter(rock fragment mean size,X_(50))were adopted to train and validate the predictive models.The root mean square error(RMSE),the mean absolute error(MAE),and the coefficient of determination(R^(2))were used as the evaluation metrics.The evaluation results demonstrated that the hybrid models showed superior performance than the standalone models.The hybrid model consisting of gradient boosting and BOA(GBoost-BOA)achieved the best prediction results compared with the other hybrid models,with the highest R^(2)value of 0.96 and the smallest values of RMSE and MAE of 0.03 and 0.02,respectively.Furthermore,sensitivity analysis was carried out to study the effects of input variables on rock fragmentation.In situ block size(XB),elastic modulus(E),and stemming length-to-burden ratio(T/B)were set as the main influencing factors.The proposed hybrid model provided a reliable prediction result and thus could be considered an alternative approach for rock fragment prediction in mining engineering.展开更多
Liquid-filled containers(LFC)are widely used to store and transport petroleum,chemical reagents,and other resources.As an important target of military strikes and terrorist bombings,LFC are vulnerable to blast waves a...Liquid-filled containers(LFC)are widely used to store and transport petroleum,chemical reagents,and other resources.As an important target of military strikes and terrorist bombings,LFC are vulnerable to blast waves and fragments.To explore the protective effect of polyurea elastomer on LFC,the damage characteristics of polyurea coated liquid-filled container(PLFC)under the combined loading of blast shock wave and fragments were studied experimentally.The microstructure of the polyurea layer was observed by scanning electron microscopy,and the fracture and self-healing phenomena were analyzed.The simulation approach was used to explain the combined blast-and fragments-induced on the PLFC in detail.Finally,the effects of shock wave and fragment alone and in combination on the damage of PLFC were comprehensively compared.Results showed that the polyurea reduces the perforation rate of the fragment to the LFC,and the self-healing phenomenon could also reduce the liquid loss rate inside the container.The polyurea reduces the degree of depression in the center of the LFC,resulting in a decrease in the distance between adjacent fragments penetrating the LFC,and an increase in the probability of transfixion and fracture between holes.Under the close-in blast,the detonation shock wave reached the LFC before the fragment.Polyurea does not all have an enhanced effect on the protection of LFC.The presence of internal water enhances the anti-blast performance of the container,and the hydrodynamic ram(HRAM)formed by the fragment impacting the water aggravated the plastic deformation of the container.The combined action has an enhancement effect on the deformation of the LFC.The depth of the container depression was 27%higher than that of the blast shock wave alone;thus,it cannot be simply summarized as linear superposition.展开更多
In the application of high-pressure water jet assisted breaking of deep underground rock engineering,the influence mechanism of rock temperature on the rock fragmentation process under jet action is still unclear.Ther...In the application of high-pressure water jet assisted breaking of deep underground rock engineering,the influence mechanism of rock temperature on the rock fragmentation process under jet action is still unclear.Therefore,the fluid evolution characteristics and rock fracture behavior during jet impingement were studied.The results indicate that the breaking process of high-temperature rock by jet impact can be divided into four stages:initial fluid-solid contact stage,intense thermal exchange stage,perforation and fracturing stage,and crack propagation and penetration stage.With the increase of rock temperature,the jet reflection angles and the time required for complete cooling of the impact surface significantly decrease,while the number of cracks and crack propagation rate significantly increase,and the rock breaking critical time is shortened by up to 34.5%.Based on numerical simulation results,it was found that the center temperature of granite at 400℃ rapidly decreased from 390 to 260℃ within 0.7 s under jet impact.In addition,a critical temperature and critical heat flux prediction model considering the staged breaking of hot rocks was established.These findings provide valuable insights to guide the water jet technology assisted deep ground hot rock excavation project.展开更多
Electronic circular dichroism(ECD)spectrum is an important tool for as-sessing molecular chirality.Tradition-al methods,like linear response time-dependent density functional theory(LR-TDDFT),predict ECD spectra well ...Electronic circular dichroism(ECD)spectrum is an important tool for as-sessing molecular chirality.Tradition-al methods,like linear response time-dependent density functional theory(LR-TDDFT),predict ECD spectra well for small or medium-sized molecules,but struggle with large sys-tems due to high computational costs,making it a significant challenge to ac-curately and efficiently predict the ECD properties of complex systems.Within the framework of the generalized energy-based fragmentation(GEBF)method for localized excited states(ESs)calculation,we propose a combination algorithm for calculating rotatory strengths of ESs in condensed phase systems.This algorithm estimates the rotatory strength of the total system by calculating and combin-ing the transition electric and magnetic dipole moments of subsystems.We have used the GEBF method to calculate the ECD properties of chiral drug molecule derivatives,green fluo-rescent protein,and cyclodextrin derivatives,and compared their results with traditional methods or experimental data.The results show that this method can efficiently and accu-rately predict the ECD spectra of these systems.Thus,the GEBF method for ECD spectra demonstrates great potential in the chiral analysis of complex systems and chiral material design,promising to become a powerful theoretical tool in chiral chemistry.展开更多
BACKGROUND The microcystic,elongated,and fragmented(MELF)pattern of invasion in endometrioid endometrial carcinoma(EEC)is a special mode of myometrial invasion that has been recently recognized by the pathology commun...BACKGROUND The microcystic,elongated,and fragmented(MELF)pattern of invasion in endometrioid endometrial carcinoma(EEC)is a special mode of myometrial invasion that has been recently recognized by the pathology community.Overex-pression of CXC chemokine receptor 4(CXCR4)in tumor cells contributes to tumor growth,invasion,angiogenesis,metastasis,and recurrence.AIM To explore the correlation between CXCR4 expression in EEC and MELF invasion and clinicopathological features.METHODS A total of 205 EEC patients treated at Peking University People’s Hospital from June 2020 to December 2021 were selected(60 cases with MELF invasion,145 cases without).The clinicopathological features of the two groups were compared,and expression of CXCR4 protein,estrogen receptor,and progesterone receptor was detected and compared by immunohistochemistry.RESULTS EEC with MELF invasion was significantly associated with low tumor grade,lymphovascular space invasion,deep myometrial invasion,cervical stromal involvement,and lymph node metastasis.There was a difference in CXCR4 expression between the two groups,with the MELF group having a significantly higher expression than the non-MELF group.CONCLUSION CXCR4 expression is significantly increased in EEC with MELF invasion and in the MELF invasion area,which may promote tumor invasion and metastasis and has some value for prognostic assessment.展开更多
BACKGROUND Early diagnosis of left ventricular diastolic dysfunction(LVDD)is essential for preventing heart failure.B-type natriuretic peptide(BNP)is a viable marker for predicting LVDD,as elevated BNP levels have bee...BACKGROUND Early diagnosis of left ventricular diastolic dysfunction(LVDD)is essential for preventing heart failure.B-type natriuretic peptide(BNP)is a viable marker for predicting LVDD,as elevated BNP levels have been associated with worsening LVDD in patients with diabetes over time.However,the utility of BNP as a diagnostic marker in diabetes is controversial,as BNP levels are often low in overweight individuals.AIM To examine the effectiveness of BNP levels and fragmented QRS(fQRS)on electrocardiography for diagnosing LVDD in patients with type 2 diabetes.METHODS This retrospective cohort study included 303 patients with type 2 diabetes(67.4±12.3 years old)with preserved ejection fraction(EF)≥50%admitted to Toyama University Hospital for glycemic management and comorbidity evaluation between November 2017 and April 2021.All participants underwent plasma BNP measurement,electrocardiography,and echocardiography.Cardiologists who were blinded to the BNP results assessed the electrocardiograms and echocardiograms.Subgroup analyses were conducted for overweight individuals.RESULTS Receiver operating characteristic(ROC)curve analysis determined optimal BNP cut-off values of 34.8 pg/mL and 7.2 pg/mL for diagnosing LVDD in non-overweight[area under the ROC curve(AUC):0.70]and overweight(AUC:0.55)groups,respectively(P=0.040).In the overweight subgroup,fQRS showed greater diagnostic accuracy for LVDD(AUC:0.67),indicating moderate diagnostic utility compared with the low performance of the BNP cutoff of 35 pg/mL(AUC:0.52)(P=0.010).Multivariate analyses confirmed that fQRS was superior to BNP for LVDD diagnosis regardless of the patient’s weight.CONCLUSION A BNP level≥35 pg/mL in non-overweight individuals may be a reliable LVDD marker.Additionally,fQRS was more effective than BNP in diagnosing LVDD irrespective of the patient’s weight.fQRS can complement BNP in the early detection of LVDD,especially in overweight patients,potentially improving early detection and mitigating progression to heart failure with preserved EF in patients with type 2 diabetes.展开更多
A measurement system for the scattering characteristics of warhead fragments based on high-speed imaging systems offers advantages such as simple deployment,flexible maneuverability,and high spatiotemporal resolution,...A measurement system for the scattering characteristics of warhead fragments based on high-speed imaging systems offers advantages such as simple deployment,flexible maneuverability,and high spatiotemporal resolution,enabling the acquisition of full-process data of the fragment scattering process.However,mismatches between camera frame rates and target velocities can lead to long motion blur tails of high-speed fragment targets,resulting in low signal-to-noise ratios and rendering conventional detection algorithms ineffective in dynamic strong interference testing environments.In this study,we propose a detection framework centered on dynamic strong interference disturbance signal separation and suppression.We introduce a mixture Gaussian model constrained under a joint spatialtemporal-transform domain Dirichlet process,combined with total variation regularization to achieve disturbance signal suppression.Experimental results demonstrate that the proposed disturbance suppression method can be integrated with certain conventional motion target detection tasks,enabling adaptation to real-world data to a certain extent.Moreover,we provide a specific implementation of this process,which achieves a detection rate close to 100%with an approximate 0%false alarm rate in multiple sets of real target field test data.This research effectively advances the development of the field of damage parameter testing.展开更多
A full-length rabbit oviductin cDNA(1909bp) was cloned. It consists of a 5’-UTR of 52bp, an open reading frame (ORF) of 1374bp and a 3’-UTR of 483bp and has more than 80% homology with that of other mammal oviductin...A full-length rabbit oviductin cDNA(1909bp) was cloned. It consists of a 5’-UTR of 52bp, an open reading frame (ORF) of 1374bp and a 3’-UTR of 483bp and has more than 80% homology with that of other mammal oviductins. N-terminal peptide (NTP) (384 residues) and C-terminal peptide (CTP) (73 residues) of deduced protein precursor has about 80% and 50% identity with that of other mammals respectively. Fusion proteins GST-NTP 368(1R-368N)and GST-CTP73 (369F-441A) were expressed and purified. NH2-terminal of CTP sequencing reveals that the purified protein is consistent with the deduced one. In order to study the function of NTP and CTP the mouse anti-NTP and rabbit anti-CTP antisera were prepared. Tissue-specific (skeleton muscle, oviduct, uterus, ovary, liver, heart and brain) analysis indicated that rabbit oviductin was only found in oviduct. The conditioned medium derived from the rabbit oviduct mucosa epithelial cells has a function of overcoming the early embryonic development block of Kunming mous e cultured in vitro. Anti-CTP antiserum could totally inhibit the early embryo development at 2-cell stage cultured in the conditioned culture medium, but anti-NTP antiserum couldn’t. There was a positive relationship between the ratio of early embryos at development block and the dosage of anti-CTP antiserum added in the conditioned culture medium. These results suggest that oviductin has a function not only on fertilization, but also on the release of early embryonic development block, and the later function domain of rabbit oviductin may be situate in its C-terminal.展开更多
Rana kunyuensis is a species of brown frog that lives exclusively on Kunyu Mountain,Yantai,China.In the current study,a 279-bp cDNA sequence encoding a novel antimicrobial peptide (AMP),designated as amurin-9KY,was cl...Rana kunyuensis is a species of brown frog that lives exclusively on Kunyu Mountain,Yantai,China.In the current study,a 279-bp cDNA sequence encoding a novel antimicrobial peptide (AMP),designated as amurin-9KY,was cloned from synthesized double-strand skin cDNA of R.kunyuensis.The amurin-9KY precursor was composed of 62 amino acid (aa) residues,whereas the mature peptide was composed of 14 aa and contained two cysteines forming a C-terminal heptapeptide ring (Rana box domain) and an amidated C-terminus.These structural characters represent a novel amphibian AMP family.Although amurin-9KY exhibited high similarity to the already identified amurin-9AM from R.amurensis,little is known about the structures and activities of amurin-9 family AMPs so far.Therefore,amurin-9KY and its three derivatives (amurin-9KY1-3) were designed and synthesized.The structures and activities were examined to evaluate the influence of C-terminal amidation and the heptapeptide ring on the activities and structure of amurin-9KY..Results indicated that C-terminal amidation was essential for antimicrobial activity,whereas both C-terminal amidation and the heptapeptide ring played roles in the low hemolytic activity.Circular dichroism (CD) spectra showed that the four peptides adopted an α-helical conformation in THF/H2O (v/v 1∶1) solution,but a random coil in aqueous solution.Elimination of the C-terminal heptapeptide ring generated two free cysteine residues with unpaired thiol groups,which greatly increased the concentration-dependent anti-oxidant activity.Scanning electron microscopy (SEM) was also performed to determine the possible bactericidal mechanisms.展开更多
In the mining industry,precise forecasting of rock fragmentation is critical for optimising blasting processes.In this study,we address the challenge of enhancing rock fragmentation assessment by developing a novel hy...In the mining industry,precise forecasting of rock fragmentation is critical for optimising blasting processes.In this study,we address the challenge of enhancing rock fragmentation assessment by developing a novel hybrid predictive model named GWO-RF.This model combines the grey wolf optimization(GWO)algorithm with the random forest(RF)technique to predict the D_(80)value,a critical parameter in evaluating rock fragmentation quality.The study is conducted using a dataset from Sarcheshmeh Copper Mine,employing six different swarm sizes for the GWO-RF hybrid model construction.The GWO-RF model’s hyperparameters are systematically optimized within established bounds,and its performance is rigorously evaluated using multiple evaluation metrics.The results show that the GWO-RF hybrid model has higher predictive skills,exceeding traditional models in terms of accuracy.Furthermore,the interpretability of the GWO-RF model is enhanced through the utilization of SHapley Additive exPlanations(SHAP)values.The insights gained from this research contribute to optimizing blasting operations and rock fragmentation outcomes in the mining industry.展开更多
Hydraulic-electric rock fragmentation(HERF)plays a significant role in improving the efficiency of high voltage pulse rock breaking.However,the underlying mechanism of HERF remains unclear.In this study,considering th...Hydraulic-electric rock fragmentation(HERF)plays a significant role in improving the efficiency of high voltage pulse rock breaking.However,the underlying mechanism of HERF remains unclear.In this study,considering the heterogeneity of the rock,microscopic thermodynamic properties,and shockwave time domain waveforms,based on the shockwave model,digital imaging technology and the discrete element method,the cyclic loading numerical simulations of HERF is achieved by coupling electrical,thermal,and solid mechanics under different formation temperatures,confining pressure,initial peak voltage,electrode bit diameter,and loading times.Meanwhile,the HERF discharge system is conducive to the laboratory experiments with various electrical parameters and the resulting broken pits are numerically reconstructed to obtain the geometric parameters.The results show that,the completely broken area consists of powdery rock debris.In the pre-broken zone,the mineral cementation of the rock determines the transition of type CⅠcracks to type CⅡand type CⅢcracks.Furthermore,the peak pressure of the shockwave increased with initial peak voltage but decreased with electrode bit diameter,while the wave front time reduced.Moreover,increasing well depth,formation temperature and confining pressure augment and inhibit HERF,but once confining pressure surpassed the threshold of 60 MPa for 152.40,215.90,and 228.60 mm electrode bits,and 40 MPa for 309.88 mm electrode bits,HERF is promoted.Additionally,for the same kind of rock,the volume and width of the broken pit increase with higher initial peak voltage and rock fissures will promote HERF.Eventually,the electrode drill bit with a 215.90 mm diameter is more suitable for drilling pink granite.This research contributes to a better microscopic understanding of HERF and provides valuable insights for electrode bit selection,as well as the optimization of circuit parameters for HERF technology.展开更多
The double casing warhead with sandwiched charge is a novel fragmentation warhead that can produce two groups of fragments with different velocity,and the previous work has presented a calculation formula to determine...The double casing warhead with sandwiched charge is a novel fragmentation warhead that can produce two groups of fragments with different velocity,and the previous work has presented a calculation formula to determine the maximum fragment velocity.The current work builds on the published formula to further develop a formula for calculating the axial distribution characteristics of the fragment velocity.For this type of warhead,the simulation of the dispersion characteristics of the detonation products at different positions shows that the detonation products at the ends have a much larger axial velocity than those in the middle,and the detonation products have a greater axial dispersion velocity when they are closer to the central axis.The loading process and the fragment velocity vary with the axial position for both casing layers,and the total velocity of the fragments is the vector sum of the radial velocity and the axial velocity.At the same axial position,the acceleration time of the inner casing is greater than that of the outer casing.For the same casing,the fragments generated at the ends have a longer acceleration time than the fragments from the middle.The proposed formula is validated with the X-ray radiography results of the four warheads previously tested experimentally and the 3D smoothedparticle hydrodynamics numerical simulation results of several series of new warheads with different configurations.The formula can accurately and reliably calculate the fragment velocity when the lengthto-diameter ratio of the charge is greater than 1.5 and the thickness of the casing is less than 20%its inner radius.This work thus provides a key reference for the theoretical analysis and the design of warheads with multiple casings.展开更多
Neutron-skin thickness is a key parameter for a neutron-rich nucleus;however,it is difficult to determine.In the framework of the Lanzhou Quantum Molecular Dynamics(LQMD)model,a possible probe for the neutron-skin thi...Neutron-skin thickness is a key parameter for a neutron-rich nucleus;however,it is difficult to determine.In the framework of the Lanzhou Quantum Molecular Dynamics(LQMD)model,a possible probe for the neutron-skin thickness(δ_(np))of neutron-rich ^(48)Ca was studied in the 140A MeV ^(48)Ca+^(9)Be projectile fragmentation reaction based on the parallel momentum distribution(p∥)of the residual fragments.A Fermi-type density distribution was employed to initiate the neutron density distributions in the LQMD simulations.A combined Gaussian function with different width parameters for the left side(Γ_(L))and the right side(Γ_(R))in the distribution was used to describe the p∥of the residual fragments.Taking neutron-rich sulfur isotopes as examples,Γ_(L) shows a sensitive correlation withδ_(np) of ^(48)Ca,and is proposed as a probe for determining the neutron skin thickness of the projectile nucleus.展开更多
This study comprehensively assessed long-term vegetation changes and forest fragmentation dynamics in the Himalayan temperate region of Pakistan from 1989 to 2019.Four satellite images,including Landsat-5 TM and Lands...This study comprehensively assessed long-term vegetation changes and forest fragmentation dynamics in the Himalayan temperate region of Pakistan from 1989 to 2019.Four satellite images,including Landsat-5 TM and Landsat-8 Operational Land Imager(OLI),were chosen for subsequent assessments in October 1989,2001,2011 and 2019.The classified maps of 1989,2001,2011 and 2019 were created using the maximum likelihood classifier.Post-classification comparison showed an overall accuracy of 82.5%and a Kappa coefficient of 0.79 for the 2019 map.Results revealed a drastic decrease in closed-canopy and open-canopy forests by 117.4 and 271.6 km^(2),respectively,and an increase in agriculture/farm cultivation by 1512.8 km^(2).The two-way ANOVA test showed statistically significant differences in the area of various cover classes.Forest fragmentation was evaluated using the Landscape Fragmentation Tool(LFT v2.0)between 1989 and 2019.The large forest core(>2.00 km^(2))decreased from 149.4 to 296.7 km^(2),and a similar pattern was observed in medium forest core(1.00-2.00 km^(2))forests.On the contrary,the small core(<1.00 km^(2))forest increased from 124.8 to 145.3 km^(2) in 2019.The perforation area increased by 296.9 km^(2),and the edge effect decreased from 458.9 to 431.7 km^(2).The frequency of patches also increased by 119.1 km^(2).The closed and open canopy classes showed a decreasing trend with an annual rate of 0.58%and 1.35%,respectively.The broad implications of these findings can be seen in the studied region as well as other global ecological areas.They serve as an imperative baseline for afforestation and reforestation operations,highlighting the urgent need for efficient management,conservation,and restoration efforts.Based on these findings,sustainable land-use policies may be put into place that support local livelihoods,protect ecosystem services,and conserve biodiversity.展开更多
An in-depth understanding of the fracture behavior and mechanism of metallic shells under internal explosive loading can help develop material designs for warheads and regulate the quantity and mass distribution of th...An in-depth understanding of the fracture behavior and mechanism of metallic shells under internal explosive loading can help develop material designs for warheads and regulate the quantity and mass distribution of the fragments formed.This study investigated the fragmentation performance of a new high-carbon silicon-manganese(HCSiMn)steel cylindrical shell through fragment recovery experiments.Compared with the conventional 45Cr steel shell,the number of small mass fragments produced by the HCSi Mn steel shell was significantly increased with a scale parameter of 0.57 g fitted by the Weibull distribution model.The fragmentation process of the HCSi Mn shell exhibited more brittle tensile fracture characteristics,with the microcrack damage zone on the outer surface being the direct cause of its high fragmentation.On the one hand,the doping of alloy elements resulted in grain refinement by forming metallographic structure of tempered sorbite,so that microscopic intergranular fracture reduces the characteristic mass of the fragments;on the other hand,the distribution of alloy carbides can exert a"pinning"effect on the substrate grains,causing more initial cracks to form and propagate along the brittle carbides,further improving the shell fragmentation.Although the killing power radius for light armored vehicles was slightly reduced by about 6%,the dense killing radius of HCSiMn steel projectile against personnel can be significantly increased by about 26%based on theoretical assessment.These results provided an experimental basis for high fragmentation warhead design,and to some extent,revealed the correlation mechanism between metallographic structure and shell fragmentation.展开更多
Transfer RNA-derived small RNAs(tsRNAs)have been shown to be involved in early embryo development and repression of endogenous retroelements in embryos and stem cells.However,it is unknown whether tsRNAs also regulate...Transfer RNA-derived small RNAs(tsRNAs)have been shown to be involved in early embryo development and repression of endogenous retroelements in embryos and stem cells.However,it is unknown whether tsRNAs also regulate embryo hatching.In this study,we mined the sequencing data of a previous experiment in which we demonstrated that the microRNA(miRNA)cargo of preimplantation embryonic extracellular vesicles(EVs)influences embryo development.We thus profiled the tsRNA cargo of EVs secreted by blastocysts and non-blastocysts.The majority of tsRNAs was identified as tRNA halves originating from the 5'ends of tRNAs.Among the 148 differentially expressed tsRNAs,the 19 nt tRNA fragment(tRF)tDR-14:32-Glu-CTC-1 was found to be significantly up-regulated in EVs derived from non-blastocysts.RT-qPCR assays confirmed its significant up-regulation in non-blastocyst embryos and their conditioned medium compared to the blastocyst group(P<0.05).Inhibition of tDR-14:32-Glu-CTC-1 by supplementing antagomirs to the conditioned medium improved embryo hatching(P<0.05).Transcriptomic analysis of embryos treated with tDR-14:32-Glu-CTC-1 antagomirs further showed differential expression of genes that are associated with embryo hatching and implantation.In summary,tDR-14:32-Glu-CTC-1 is up-regulated in non-blastocyst embryos and their secretions,and inhibition of tDR-14:32-Glu-CTC-1 promotes embryo hatching,while influencing embryo implantation-related genes and pathways.These results indicate that embryonic EVs containing specific tRFs may regulate preimplantation embryo development.展开更多
基金supported by the Natural Science Foundation of Technology Gallery in Jilin Province of China,No.2011-15237the National Natural Science Foundation of China,No.81160159
文摘The murine microglial cell line BV2 has neuroprotective effects, but is toxic to neurons by secret-ing inlfammatory cytokines, and is an important target in the treatment of nerve inlfammation and neurodegenerative diseases. In the present study, we observed the effects of transfecting three amyloid precursor-like protein 2 (APLP2) C-terminal fragments (CTFs; C57, C50 and C31) in the pEGFP-N1 vector on S100A9 expression in BV2 cells. Reverse transcription-PCR, western blot assay and immunocytochemistry revealed that S100A9 protein and mRNA expression was greater in BV2 cells after CTF transfection than after mock transfection with an empty vector. Furthermore, transfection of full-length APLP2-751 resulted in low levels of S100A9 protein ex-pression. Our results show that APLP2-CTFs upregulate S100A9 protein and mRNA expression in BV2 cells, and identify a novel pathway involved in neuronal injury and apoptosis, and repair and protection in Alzheimer’s disease.
文摘This paper proposes an efficient strategy for resource utilization in Elastic Optical Networks (EONs) to minimize spectrum fragmentation and reduce connection blocking probability during Routing and Spectrum Allocation (RSA). The proposed method, Dynamic Threshold-Based Routing and Spectrum Allocation with Fragmentation Awareness (DT-RSAF), integrates rerouting and spectrum defragmentation as needed. By leveraging Yen’s shortest path algorithm, DT-RSAF enhances resource utilization while ensuring improved service continuity. A dynamic threshold mechanism enables the algorithm to adapt to varying network conditions, while its fragmentation awareness effectively mitigates spectrum fragmentation. Simulation results on NSFNET and COST 239 topologies demonstrate that DT-RSAF significantly outperforms methods such as K-Shortest Path Routing and Spectrum Allocation (KSP-RSA), Load Balanced and Fragmentation-Aware (LBFA), and the Invasive Weed Optimization-based RSA (IWO-RSA). Under heavy traffic, DT-RSAF reduces the blocking probability by up to 15% and achieves lower Bandwidth Fragmentation Ratios (BFR), ranging from 74% to 75%, compared to 77% - 80% for KSP-RSA, 75% - 77% for LBFA, and approximately 76% for IWO-RSA. DT-RSAF also demonstrated reasonable computation times compared to KSP-RSA, LBFA, and IWO-RSA. On a small-sized network, its computation time was 8710 times faster than that of Integer Linear Programming (ILP) on the same network topology. Additionally, it achieved a similar execution time to LBFA and outperformed IWO-RSA in terms of efficiency. These results highlight DT-RSAF’s capability to maintain large contiguous frequency blocks, making it highly effective for accommodating high-bandwidth requests in EONs while maintaining reasonable execution times.
基金supported by the National Natural Science Foundation of China(Grant No.12474159)the Fundamental Research Funds for the Central University,Sun Yat-sen University(Grant No.24qnpy119)the China Postdoctoral Science Foundation(Grant No.2024T171067)。
文摘We investigate distinct non-Hermitian skin effects(NHSEs)in real and Fock spaces induced by the interplay between the Hilbert space fragmentation and multiple non-Hermitian pumping channels.Using an extended Hatano–Nelson model with next-nearest neighbor hopping and strong interaction as an example,we found that two fermions loaded in the lattice exhibit different real-space NHSE depending on the Hilbert space fragments to which they belong.Moreover,in the high-energy sector resulting from fragmentation,the two-particle-bound states form a one-dimensional lattice in Fock space,producing a Fock-space NHSE.At half-filling,richer patterns of Fock-space skin-like localization emerge for the different fragmented energy sectors and subsectors while realspace NHSE is suppressed by many-body effects.This study extends our understanding of the interplay between NHSE and Hilbert space fragmentation and provides detailed insights into their manifestation in interacting non-Hermitian systems.
基金supported by Poongsan-KAIST Future Research Center Projectthe fund support provided by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(Grant No.2023R1A2C2005661)。
文摘This study presents a machine learning-based method for predicting fragment velocity distribution in warhead fragmentation under explosive loading condition.The fragment resultant velocities are correlated with key design parameters including casing dimensions and detonation positions.The paper details the finite element analysis for fragmentation,the characterizations of the dynamic hardening and fracture models,the generation of comprehensive datasets,and the training of the ANN model.The results show the influence of casing dimensions on fragment velocity distributions,with the tendencies indicating increased resultant velocity with reduced thickness,increased length and diameter.The model's predictive capability is demonstrated through the accurate predictions for both training and testing datasets,showing its potential for the real-time prediction of fragmentation performance.
基金National Natural Science Foundation of China,Grant/Award Number:52374153。
文摘Rock fragmentation is an important indicator for assessing the quality of blasting operations.However,accurate prediction of rock fragmentation after blasting is challenging due to the complicated blasting parameters and rock properties.For this reason,optimized by the Bayesian optimization algorithm(BOA),four hybrid machine learning models,including random forest,adaptive boosting,gradient boosting,and extremely randomized trees,were developed in this study.A total of 102 data sets with seven input parameters(spacing-to-burden ratio,hole depth-to-burden ratio,burden-to-hole diameter ratio,stemming length-to-burden ratio,powder factor,in situ block size,and elastic modulus)and one output parameter(rock fragment mean size,X_(50))were adopted to train and validate the predictive models.The root mean square error(RMSE),the mean absolute error(MAE),and the coefficient of determination(R^(2))were used as the evaluation metrics.The evaluation results demonstrated that the hybrid models showed superior performance than the standalone models.The hybrid model consisting of gradient boosting and BOA(GBoost-BOA)achieved the best prediction results compared with the other hybrid models,with the highest R^(2)value of 0.96 and the smallest values of RMSE and MAE of 0.03 and 0.02,respectively.Furthermore,sensitivity analysis was carried out to study the effects of input variables on rock fragmentation.In situ block size(XB),elastic modulus(E),and stemming length-to-burden ratio(T/B)were set as the main influencing factors.The proposed hybrid model provided a reliable prediction result and thus could be considered an alternative approach for rock fragment prediction in mining engineering.
基金supported by the National Natural Science Foundation of China(Grant Nos.12102480,52278543 and 51978660)Natural Science Foundation of Jiangsu Province(Grant No.BK20231489)。
文摘Liquid-filled containers(LFC)are widely used to store and transport petroleum,chemical reagents,and other resources.As an important target of military strikes and terrorist bombings,LFC are vulnerable to blast waves and fragments.To explore the protective effect of polyurea elastomer on LFC,the damage characteristics of polyurea coated liquid-filled container(PLFC)under the combined loading of blast shock wave and fragments were studied experimentally.The microstructure of the polyurea layer was observed by scanning electron microscopy,and the fracture and self-healing phenomena were analyzed.The simulation approach was used to explain the combined blast-and fragments-induced on the PLFC in detail.Finally,the effects of shock wave and fragment alone and in combination on the damage of PLFC were comprehensively compared.Results showed that the polyurea reduces the perforation rate of the fragment to the LFC,and the self-healing phenomenon could also reduce the liquid loss rate inside the container.The polyurea reduces the degree of depression in the center of the LFC,resulting in a decrease in the distance between adjacent fragments penetrating the LFC,and an increase in the probability of transfixion and fracture between holes.Under the close-in blast,the detonation shock wave reached the LFC before the fragment.Polyurea does not all have an enhanced effect on the protection of LFC.The presence of internal water enhances the anti-blast performance of the container,and the hydrodynamic ram(HRAM)formed by the fragment impacting the water aggravated the plastic deformation of the container.The combined action has an enhancement effect on the deformation of the LFC.The depth of the container depression was 27%higher than that of the blast shock wave alone;thus,it cannot be simply summarized as linear superposition.
基金supported by National Natural Science Foundation of China (No.U23A20597)National Major Science and Technology Project of China (No.2024ZD1003803)+1 种基金Chongqing Science Fund for Distinguished Young Scholars of Chongqing Municipality (No.CSTB2022NSCQ-JQX0028)Natural Science Foundation of Chongqing (No.CSTB2024NSCQ-MSX0503)。
文摘In the application of high-pressure water jet assisted breaking of deep underground rock engineering,the influence mechanism of rock temperature on the rock fragmentation process under jet action is still unclear.Therefore,the fluid evolution characteristics and rock fracture behavior during jet impingement were studied.The results indicate that the breaking process of high-temperature rock by jet impact can be divided into four stages:initial fluid-solid contact stage,intense thermal exchange stage,perforation and fracturing stage,and crack propagation and penetration stage.With the increase of rock temperature,the jet reflection angles and the time required for complete cooling of the impact surface significantly decrease,while the number of cracks and crack propagation rate significantly increase,and the rock breaking critical time is shortened by up to 34.5%.Based on numerical simulation results,it was found that the center temperature of granite at 400℃ rapidly decreased from 390 to 260℃ within 0.7 s under jet impact.In addition,a critical temperature and critical heat flux prediction model considering the staged breaking of hot rocks was established.These findings provide valuable insights to guide the water jet technology assisted deep ground hot rock excavation project.
基金supported by the National Natural Science Foundation of China(No.22273038 and No.22033004).
文摘Electronic circular dichroism(ECD)spectrum is an important tool for as-sessing molecular chirality.Tradition-al methods,like linear response time-dependent density functional theory(LR-TDDFT),predict ECD spectra well for small or medium-sized molecules,but struggle with large sys-tems due to high computational costs,making it a significant challenge to ac-curately and efficiently predict the ECD properties of complex systems.Within the framework of the generalized energy-based fragmentation(GEBF)method for localized excited states(ESs)calculation,we propose a combination algorithm for calculating rotatory strengths of ESs in condensed phase systems.This algorithm estimates the rotatory strength of the total system by calculating and combin-ing the transition electric and magnetic dipole moments of subsystems.We have used the GEBF method to calculate the ECD properties of chiral drug molecule derivatives,green fluo-rescent protein,and cyclodextrin derivatives,and compared their results with traditional methods or experimental data.The results show that this method can efficiently and accu-rately predict the ECD spectra of these systems.Thus,the GEBF method for ECD spectra demonstrates great potential in the chiral analysis of complex systems and chiral material design,promising to become a powerful theoretical tool in chiral chemistry.
文摘BACKGROUND The microcystic,elongated,and fragmented(MELF)pattern of invasion in endometrioid endometrial carcinoma(EEC)is a special mode of myometrial invasion that has been recently recognized by the pathology community.Overex-pression of CXC chemokine receptor 4(CXCR4)in tumor cells contributes to tumor growth,invasion,angiogenesis,metastasis,and recurrence.AIM To explore the correlation between CXCR4 expression in EEC and MELF invasion and clinicopathological features.METHODS A total of 205 EEC patients treated at Peking University People’s Hospital from June 2020 to December 2021 were selected(60 cases with MELF invasion,145 cases without).The clinicopathological features of the two groups were compared,and expression of CXCR4 protein,estrogen receptor,and progesterone receptor was detected and compared by immunohistochemistry.RESULTS EEC with MELF invasion was significantly associated with low tumor grade,lymphovascular space invasion,deep myometrial invasion,cervical stromal involvement,and lymph node metastasis.There was a difference in CXCR4 expression between the two groups,with the MELF group having a significantly higher expression than the non-MELF group.CONCLUSION CXCR4 expression is significantly increased in EEC with MELF invasion and in the MELF invasion area,which may promote tumor invasion and metastasis and has some value for prognostic assessment.
基金Supported by the JSPS KAKENHI,No.JP21K10300 and No.JP24K02714.
文摘BACKGROUND Early diagnosis of left ventricular diastolic dysfunction(LVDD)is essential for preventing heart failure.B-type natriuretic peptide(BNP)is a viable marker for predicting LVDD,as elevated BNP levels have been associated with worsening LVDD in patients with diabetes over time.However,the utility of BNP as a diagnostic marker in diabetes is controversial,as BNP levels are often low in overweight individuals.AIM To examine the effectiveness of BNP levels and fragmented QRS(fQRS)on electrocardiography for diagnosing LVDD in patients with type 2 diabetes.METHODS This retrospective cohort study included 303 patients with type 2 diabetes(67.4±12.3 years old)with preserved ejection fraction(EF)≥50%admitted to Toyama University Hospital for glycemic management and comorbidity evaluation between November 2017 and April 2021.All participants underwent plasma BNP measurement,electrocardiography,and echocardiography.Cardiologists who were blinded to the BNP results assessed the electrocardiograms and echocardiograms.Subgroup analyses were conducted for overweight individuals.RESULTS Receiver operating characteristic(ROC)curve analysis determined optimal BNP cut-off values of 34.8 pg/mL and 7.2 pg/mL for diagnosing LVDD in non-overweight[area under the ROC curve(AUC):0.70]and overweight(AUC:0.55)groups,respectively(P=0.040).In the overweight subgroup,fQRS showed greater diagnostic accuracy for LVDD(AUC:0.67),indicating moderate diagnostic utility compared with the low performance of the BNP cutoff of 35 pg/mL(AUC:0.52)(P=0.010).Multivariate analyses confirmed that fQRS was superior to BNP for LVDD diagnosis regardless of the patient’s weight.CONCLUSION A BNP level≥35 pg/mL in non-overweight individuals may be a reliable LVDD marker.Additionally,fQRS was more effective than BNP in diagnosing LVDD irrespective of the patient’s weight.fQRS can complement BNP in the early detection of LVDD,especially in overweight patients,potentially improving early detection and mitigating progression to heart failure with preserved EF in patients with type 2 diabetes.
文摘A measurement system for the scattering characteristics of warhead fragments based on high-speed imaging systems offers advantages such as simple deployment,flexible maneuverability,and high spatiotemporal resolution,enabling the acquisition of full-process data of the fragment scattering process.However,mismatches between camera frame rates and target velocities can lead to long motion blur tails of high-speed fragment targets,resulting in low signal-to-noise ratios and rendering conventional detection algorithms ineffective in dynamic strong interference testing environments.In this study,we propose a detection framework centered on dynamic strong interference disturbance signal separation and suppression.We introduce a mixture Gaussian model constrained under a joint spatialtemporal-transform domain Dirichlet process,combined with total variation regularization to achieve disturbance signal suppression.Experimental results demonstrate that the proposed disturbance suppression method can be integrated with certain conventional motion target detection tasks,enabling adaptation to real-world data to a certain extent.Moreover,we provide a specific implementation of this process,which achieves a detection rate close to 100%with an approximate 0%false alarm rate in multiple sets of real target field test data.This research effectively advances the development of the field of damage parameter testing.
基金Supported by National Natural Science Foundation of China (39730460)National "973" Project (G1999055902)National Labora-
文摘A full-length rabbit oviductin cDNA(1909bp) was cloned. It consists of a 5’-UTR of 52bp, an open reading frame (ORF) of 1374bp and a 3’-UTR of 483bp and has more than 80% homology with that of other mammal oviductins. N-terminal peptide (NTP) (384 residues) and C-terminal peptide (CTP) (73 residues) of deduced protein precursor has about 80% and 50% identity with that of other mammals respectively. Fusion proteins GST-NTP 368(1R-368N)and GST-CTP73 (369F-441A) were expressed and purified. NH2-terminal of CTP sequencing reveals that the purified protein is consistent with the deduced one. In order to study the function of NTP and CTP the mouse anti-NTP and rabbit anti-CTP antisera were prepared. Tissue-specific (skeleton muscle, oviduct, uterus, ovary, liver, heart and brain) analysis indicated that rabbit oviductin was only found in oviduct. The conditioned medium derived from the rabbit oviduct mucosa epithelial cells has a function of overcoming the early embryonic development block of Kunming mous e cultured in vitro. Anti-CTP antiserum could totally inhibit the early embryo development at 2-cell stage cultured in the conditioned culture medium, but anti-NTP antiserum couldn’t. There was a positive relationship between the ratio of early embryos at development block and the dosage of anti-CTP antiserum added in the conditioned culture medium. These results suggest that oviductin has a function not only on fertilization, but also on the release of early embryonic development block, and the later function domain of rabbit oviductin may be situate in its C-terminal.
基金supported by grants from the National Natural Science Foundation of China(31772455)Natural Science Foundation of Jiangsu Province(BK20160336and BK20171214)+1 种基金Natural Science Foundation of College in Jiangsu Province(16KJB350004)Suzhou Science and Technology Development Project(SYN201504 and SNG2017045)
文摘Rana kunyuensis is a species of brown frog that lives exclusively on Kunyu Mountain,Yantai,China.In the current study,a 279-bp cDNA sequence encoding a novel antimicrobial peptide (AMP),designated as amurin-9KY,was cloned from synthesized double-strand skin cDNA of R.kunyuensis.The amurin-9KY precursor was composed of 62 amino acid (aa) residues,whereas the mature peptide was composed of 14 aa and contained two cysteines forming a C-terminal heptapeptide ring (Rana box domain) and an amidated C-terminus.These structural characters represent a novel amphibian AMP family.Although amurin-9KY exhibited high similarity to the already identified amurin-9AM from R.amurensis,little is known about the structures and activities of amurin-9 family AMPs so far.Therefore,amurin-9KY and its three derivatives (amurin-9KY1-3) were designed and synthesized.The structures and activities were examined to evaluate the influence of C-terminal amidation and the heptapeptide ring on the activities and structure of amurin-9KY..Results indicated that C-terminal amidation was essential for antimicrobial activity,whereas both C-terminal amidation and the heptapeptide ring played roles in the low hemolytic activity.Circular dichroism (CD) spectra showed that the four peptides adopted an α-helical conformation in THF/H2O (v/v 1∶1) solution,but a random coil in aqueous solution.Elimination of the C-terminal heptapeptide ring generated two free cysteine residues with unpaired thiol groups,which greatly increased the concentration-dependent anti-oxidant activity.Scanning electron microscopy (SEM) was also performed to determine the possible bactericidal mechanisms.
基金Projects(42177164,52474121)supported by the National Science Foundation of ChinaProject(PBSKL2023A12)supported by the State Key Laboratory of Precision Blasting and Hubei Key Laboratory of Blasting Engineering,China。
文摘In the mining industry,precise forecasting of rock fragmentation is critical for optimising blasting processes.In this study,we address the challenge of enhancing rock fragmentation assessment by developing a novel hybrid predictive model named GWO-RF.This model combines the grey wolf optimization(GWO)algorithm with the random forest(RF)technique to predict the D_(80)value,a critical parameter in evaluating rock fragmentation quality.The study is conducted using a dataset from Sarcheshmeh Copper Mine,employing six different swarm sizes for the GWO-RF hybrid model construction.The GWO-RF model’s hyperparameters are systematically optimized within established bounds,and its performance is rigorously evaluated using multiple evaluation metrics.The results show that the GWO-RF hybrid model has higher predictive skills,exceeding traditional models in terms of accuracy.Furthermore,the interpretability of the GWO-RF model is enhanced through the utilization of SHapley Additive exPlanations(SHAP)values.The insights gained from this research contribute to optimizing blasting operations and rock fragmentation outcomes in the mining industry.
基金supported by the National Natural Science Foundation of China(Nos.52034006,52004229,52225401,and 52274231)the Regional Innovation Cooperation Project of Sichuan Province(No.2022YFQ0059)+3 种基金Science and Technology Cooperation Project of the CNPC-SWPU Innovation Alliance(No.2020CX040301)Natural Science Foundation of Sichuan Province(No.2023NSFSC0431)Science and Technology Strategic Cooperation Project between Nanchong City and Southwest Petroleum University(No.SXHZ004)Research and innovation Fund for Graduate Students of Southwest Petroleum University(No.2022KYCX058).
文摘Hydraulic-electric rock fragmentation(HERF)plays a significant role in improving the efficiency of high voltage pulse rock breaking.However,the underlying mechanism of HERF remains unclear.In this study,considering the heterogeneity of the rock,microscopic thermodynamic properties,and shockwave time domain waveforms,based on the shockwave model,digital imaging technology and the discrete element method,the cyclic loading numerical simulations of HERF is achieved by coupling electrical,thermal,and solid mechanics under different formation temperatures,confining pressure,initial peak voltage,electrode bit diameter,and loading times.Meanwhile,the HERF discharge system is conducive to the laboratory experiments with various electrical parameters and the resulting broken pits are numerically reconstructed to obtain the geometric parameters.The results show that,the completely broken area consists of powdery rock debris.In the pre-broken zone,the mineral cementation of the rock determines the transition of type CⅠcracks to type CⅡand type CⅢcracks.Furthermore,the peak pressure of the shockwave increased with initial peak voltage but decreased with electrode bit diameter,while the wave front time reduced.Moreover,increasing well depth,formation temperature and confining pressure augment and inhibit HERF,but once confining pressure surpassed the threshold of 60 MPa for 152.40,215.90,and 228.60 mm electrode bits,and 40 MPa for 309.88 mm electrode bits,HERF is promoted.Additionally,for the same kind of rock,the volume and width of the broken pit increase with higher initial peak voltage and rock fissures will promote HERF.Eventually,the electrode drill bit with a 215.90 mm diameter is more suitable for drilling pink granite.This research contributes to a better microscopic understanding of HERF and provides valuable insights for electrode bit selection,as well as the optimization of circuit parameters for HERF technology.
基金supported by the National Natural Science Foundation of China(Grant No.11872121)。
文摘The double casing warhead with sandwiched charge is a novel fragmentation warhead that can produce two groups of fragments with different velocity,and the previous work has presented a calculation formula to determine the maximum fragment velocity.The current work builds on the published formula to further develop a formula for calculating the axial distribution characteristics of the fragment velocity.For this type of warhead,the simulation of the dispersion characteristics of the detonation products at different positions shows that the detonation products at the ends have a much larger axial velocity than those in the middle,and the detonation products have a greater axial dispersion velocity when they are closer to the central axis.The loading process and the fragment velocity vary with the axial position for both casing layers,and the total velocity of the fragments is the vector sum of the radial velocity and the axial velocity.At the same axial position,the acceleration time of the inner casing is greater than that of the outer casing.For the same casing,the fragments generated at the ends have a longer acceleration time than the fragments from the middle.The proposed formula is validated with the X-ray radiography results of the four warheads previously tested experimentally and the 3D smoothedparticle hydrodynamics numerical simulation results of several series of new warheads with different configurations.The formula can accurately and reliably calculate the fragment velocity when the lengthto-diameter ratio of the charge is greater than 1.5 and the thickness of the casing is less than 20%its inner radius.This work thus provides a key reference for the theoretical analysis and the design of warheads with multiple casings.
基金the National Natural Science Foundation of China(Nos.12375123,11975091,and 12305130)the Natural Science Foundation of Henan Province(No.242300421048)+1 种基金China Postdoctoral Science Foundation(No.2023M731016)Henan Postdoctoral Foundation(No.HN2022164).
文摘Neutron-skin thickness is a key parameter for a neutron-rich nucleus;however,it is difficult to determine.In the framework of the Lanzhou Quantum Molecular Dynamics(LQMD)model,a possible probe for the neutron-skin thickness(δ_(np))of neutron-rich ^(48)Ca was studied in the 140A MeV ^(48)Ca+^(9)Be projectile fragmentation reaction based on the parallel momentum distribution(p∥)of the residual fragments.A Fermi-type density distribution was employed to initiate the neutron density distributions in the LQMD simulations.A combined Gaussian function with different width parameters for the left side(Γ_(L))and the right side(Γ_(R))in the distribution was used to describe the p∥of the residual fragments.Taking neutron-rich sulfur isotopes as examples,Γ_(L) shows a sensitive correlation withδ_(np) of ^(48)Ca,and is proposed as a probe for determining the neutron skin thickness of the projectile nucleus.
基金This research was supported by project number(RSP2024R384)King Saud University,Riyadh,Saudi Arabia.
文摘This study comprehensively assessed long-term vegetation changes and forest fragmentation dynamics in the Himalayan temperate region of Pakistan from 1989 to 2019.Four satellite images,including Landsat-5 TM and Landsat-8 Operational Land Imager(OLI),were chosen for subsequent assessments in October 1989,2001,2011 and 2019.The classified maps of 1989,2001,2011 and 2019 were created using the maximum likelihood classifier.Post-classification comparison showed an overall accuracy of 82.5%and a Kappa coefficient of 0.79 for the 2019 map.Results revealed a drastic decrease in closed-canopy and open-canopy forests by 117.4 and 271.6 km^(2),respectively,and an increase in agriculture/farm cultivation by 1512.8 km^(2).The two-way ANOVA test showed statistically significant differences in the area of various cover classes.Forest fragmentation was evaluated using the Landscape Fragmentation Tool(LFT v2.0)between 1989 and 2019.The large forest core(>2.00 km^(2))decreased from 149.4 to 296.7 km^(2),and a similar pattern was observed in medium forest core(1.00-2.00 km^(2))forests.On the contrary,the small core(<1.00 km^(2))forest increased from 124.8 to 145.3 km^(2) in 2019.The perforation area increased by 296.9 km^(2),and the edge effect decreased from 458.9 to 431.7 km^(2).The frequency of patches also increased by 119.1 km^(2).The closed and open canopy classes showed a decreasing trend with an annual rate of 0.58%and 1.35%,respectively.The broad implications of these findings can be seen in the studied region as well as other global ecological areas.They serve as an imperative baseline for afforestation and reforestation operations,highlighting the urgent need for efficient management,conservation,and restoration efforts.Based on these findings,sustainable land-use policies may be put into place that support local livelihoods,protect ecosystem services,and conserve biodiversity.
基金funded by the National Natural Science Foundation of China (Grant Nos.12302444 and 12202349)。
文摘An in-depth understanding of the fracture behavior and mechanism of metallic shells under internal explosive loading can help develop material designs for warheads and regulate the quantity and mass distribution of the fragments formed.This study investigated the fragmentation performance of a new high-carbon silicon-manganese(HCSiMn)steel cylindrical shell through fragment recovery experiments.Compared with the conventional 45Cr steel shell,the number of small mass fragments produced by the HCSi Mn steel shell was significantly increased with a scale parameter of 0.57 g fitted by the Weibull distribution model.The fragmentation process of the HCSi Mn shell exhibited more brittle tensile fracture characteristics,with the microcrack damage zone on the outer surface being the direct cause of its high fragmentation.On the one hand,the doping of alloy elements resulted in grain refinement by forming metallographic structure of tempered sorbite,so that microscopic intergranular fracture reduces the characteristic mass of the fragments;on the other hand,the distribution of alloy carbides can exert a"pinning"effect on the substrate grains,causing more initial cracks to form and propagate along the brittle carbides,further improving the shell fragmentation.Although the killing power radius for light armored vehicles was slightly reduced by about 6%,the dense killing radius of HCSiMn steel projectile against personnel can be significantly increased by about 26%based on theoretical assessment.These results provided an experimental basis for high fragmentation warhead design,and to some extent,revealed the correlation mechanism between metallographic structure and shell fragmentation.
基金supported by Ghent University(Grant:Bijzonder Onderzoeksfonds Geconcerteerde Onderzoeksactie 2018000504[GOA030-18 BOF])supported by Ghent University:BOF.STG.2022.02.0034.01+1 种基金supported by China Scholarship Council:Grant 202006910034supported by Fonds Wetenschappelijk Onderzoek:Grant 1228821N and 12A2H24N。
文摘Transfer RNA-derived small RNAs(tsRNAs)have been shown to be involved in early embryo development and repression of endogenous retroelements in embryos and stem cells.However,it is unknown whether tsRNAs also regulate embryo hatching.In this study,we mined the sequencing data of a previous experiment in which we demonstrated that the microRNA(miRNA)cargo of preimplantation embryonic extracellular vesicles(EVs)influences embryo development.We thus profiled the tsRNA cargo of EVs secreted by blastocysts and non-blastocysts.The majority of tsRNAs was identified as tRNA halves originating from the 5'ends of tRNAs.Among the 148 differentially expressed tsRNAs,the 19 nt tRNA fragment(tRF)tDR-14:32-Glu-CTC-1 was found to be significantly up-regulated in EVs derived from non-blastocysts.RT-qPCR assays confirmed its significant up-regulation in non-blastocyst embryos and their conditioned medium compared to the blastocyst group(P<0.05).Inhibition of tDR-14:32-Glu-CTC-1 by supplementing antagomirs to the conditioned medium improved embryo hatching(P<0.05).Transcriptomic analysis of embryos treated with tDR-14:32-Glu-CTC-1 antagomirs further showed differential expression of genes that are associated with embryo hatching and implantation.In summary,tDR-14:32-Glu-CTC-1 is up-regulated in non-blastocyst embryos and their secretions,and inhibition of tDR-14:32-Glu-CTC-1 promotes embryo hatching,while influencing embryo implantation-related genes and pathways.These results indicate that embryonic EVs containing specific tRFs may regulate preimplantation embryo development.