The increase of competition, economic recession and financial crises has increased business failure and depending on this the researchers have attempted to develop new approaches which can yield more correct and more ...The increase of competition, economic recession and financial crises has increased business failure and depending on this the researchers have attempted to develop new approaches which can yield more correct and more reliable results. The classification and regression tree (CART) is one of the new modeling techniques which is developed for this purpose. In this study, the classification and regression trees method is explained and tested the power of the financial failure prediction. CART is applied for the data of industry companies which is trade in Istanbul Stock Exchange (ISE) between 1997-2007. As a result of this study, it has been observed that, CART has a high predicting power of financial failure one, two and three years prior to failure, and profitability ratios being the most important ratios in the prediction of failure.展开更多
This paper presents a supervised learning algorithm for retinal vascular segmentation based on classification and regression tree (CART) algorithm and improved adptive bosting (AdaBoost). Local binary patterns (LBP) t...This paper presents a supervised learning algorithm for retinal vascular segmentation based on classification and regression tree (CART) algorithm and improved adptive bosting (AdaBoost). Local binary patterns (LBP) texture features and local features are extracted by extracting,reversing,dilating and enhancing the green components of retinal images to construct a 17-dimensional feature vector. A dataset is constructed by using the feature vector and the data manually marked by the experts. The feature is used to generate CART binary tree for nodes,where CART binary tree is as the AdaBoost weak classifier,and AdaBoost is improved by adding some re-judgment functions to form a strong classifier. The proposed algorithm is simulated on the digital retinal images for vessel extraction (DRIVE). The experimental results show that the proposed algorithm has higher segmentation accuracy for blood vessels,and the result basically contains complete blood vessel details. Moreover,the segmented blood vessel tree has good connectivity,which basically reflects the distribution trend of blood vessels. Compared with the traditional AdaBoost classification algorithm and the support vector machine (SVM) based classification algorithm,the proposed algorithm has higher average accuracy and reliability index,which is similar to the segmentation results of the state-of-the-art segmentation algorithm.展开更多
The sub-pixel impervious surface percentage(SPIS) is the fraction of impervious surface area in one pixel,and it is an important indicator of urbanization.Using remote sensing data,the spatial distribution of SPIS val...The sub-pixel impervious surface percentage(SPIS) is the fraction of impervious surface area in one pixel,and it is an important indicator of urbanization.Using remote sensing data,the spatial distribution of SPIS values over large areas can be extracted,and these data are significant for studies of urban climate,environment and hydrology.To develop a stabilized,multi-temporal SPIS estimation method suitable for typical temperate semi-arid climate zones with distinct seasons,an optimal model for estimating SPIS values within Beijing Municipality was built that is based on the classification and regression tree(CART) algorithm.First,models with different input variables for SPIS estimation were built by integrating multi-source remote sensing data with other auxiliary data.The optimal model was selected through the analysis and comparison of the assessed accuracy of these models.Subsequently,multi-temporal SPIS mapping was carried out based on the optimal model.The results are as follows:1) multi-seasonal images and nighttime light(NTL) data are the optimal input variables for SPIS estimation within Beijing Municipality,where the intra-annual variability in vegetation is distinct.The different spectral characteristics in the cultivated land caused by the different farming characteristics and vegetation phenology can be detected by the multi-seasonal images effectively.NLT data can effectively reduce the misestimation caused by the spectral similarity between bare land and impervious surfaces.After testing,the SPIS modeling correlation coefficient(r) is approximately 0.86,the average error(AE) is approximately 12.8%,and the relative error(RE) is approximately 0.39.2) The SPIS results have been divided into areas with high-density impervious cover(70%–100%),medium-density impervious cover(40%–70%),low-density impervious cover(10%–40%) and natural cover(0%–10%).The SPIS model performed better in estimating values for high-density urban areas than other categories.3) Multi-temporal SPIS mapping(1991–2016) was conducted based on the optimized SPIS results for 2005.After testing,AE ranges from 12.7% to 15.2%,RE ranges from 0.39 to 0.46,and r ranges from 0.81 to 0.86.It is demonstrated that the proposed approach for estimating sub-pixel level impervious surface by integrating the CART algorithm and multi-source remote sensing data is feasible and suitable for multi-temporal SPIS mapping of areas with distinct intra-annual variability in vegetation.展开更多
Privacy protection is a hot research topic in information security field.An improved XGBoost algorithm is proposed to protect the privacy in classification tasks.By combining with differential privacy protection,the X...Privacy protection is a hot research topic in information security field.An improved XGBoost algorithm is proposed to protect the privacy in classification tasks.By combining with differential privacy protection,the XGBoost can improve the classification accuracy while protecting privacy information.When using CART regression tree to build a single decision tree,noise is added according to Laplace mechanism.Compared with random forest algorithm,this algorithm can reduce computation cost and prevent overfitting to a certain extent.The experimental results show that the proposed algorithm is more effective than other traditional algorithms while protecting the privacy information in training data.展开更多
<strong>Purpose of Review:</strong> The management of eye injuries is both difficult and argumentative. This study attempts to highlight the management of ocular trauma using currently available informatio...<strong>Purpose of Review:</strong> The management of eye injuries is both difficult and argumentative. This study attempts to highlight the management of ocular trauma using currently available information in the literature and author experience. This review presents a workable framework from the first presentation, epidemiology, classification, investigations, management principles, complications, prognostic factors, final visual outcome and management debates. <strong>Review Findings:</strong> Mechanical ocular trauma is a leading cause of monocular blindness and possible handicap worldwide. Among several classification systems, the most widely accepted is Birmingham Eye Trauma Terminology (BETT). Mechanical ocular trauma is a topic of unsolved controversy. Patching for corneal abrasion, paracentesis for hyphema, the timing of cataract surgery and intraocular lens implantation are all issues in anterior segment injuries. Regarding posterior segment controversies, the timing of vitrectomy, use of prophylactic cryotherapy, the necessity of intravitreal antibiotics in the absence of infection, the use of vitrectomy vs vitreous tap in traumatic endophthalmitis is the issues. The pediatric age group needs to be approached by a different protocol due to the risk of amblyopia, intraocular inflammation, and significant vitreoretinal adhesions. The various prognostic factors have a role in the final visual outcome. B scan is used to exclude R.D, Intraocular foreign body (IOFB), and vitreous haemorrhage in hazy media. Individual surgical strategies are used for every patient according to the classification and extent of the injuries. <strong>Conclusion:</strong> This article examines relevant evidence on the management challenges and controversies of mechanical trauma of the eye and offers treatment recommendations based on published research and the authors’ own experience.展开更多
Impervious surface(IS) is often recognized as the indicator of urban environmental changes. Numerous research efforts have been devoted to studying its spatio-temporal dynamics and ecological effects, especially for t...Impervious surface(IS) is often recognized as the indicator of urban environmental changes. Numerous research efforts have been devoted to studying its spatio-temporal dynamics and ecological effects, especially for the IS in Beijing metropolitan region. However, most previous studies primarily considered the Beijing metropolitan region as a whole without considering the differences and heterogeneity among the function zones. In this study, the subpixel impervious surface results in Beijing within a time series(1991, 2001, 2005, 2011 and 2015) were extracted by means of the classification and regression tree(CART) model combined with change detection models. Then based on the method of standard deviation ellipse, Lorenz curve, contribution index(CI) and landscape metrics, the spatio-temporal dynamics and variations of IS(1991, 2001, 2011 and 2015) in different function zones and districts were analyzed. It is found that the total area of impervious surface in Beijing increased dramatically during the study period, increasing about 144.18%. The deflection angle of major axis of standard deviation ellipse decreased from 47.15° to 38.82°, indicating the major development axis in Beijing gradually moved from northeast-southwest to north-south. Moreover, the heterogeneity of impervious surface’s distribution among 16 districts weakened gradually, but the CI values and landscape metrics in four function zones differed greatly. The urban function extended zone(UFEZ), the main source of the growth of IS in Beijing, had the highest CI values. Its lowest CI value was 1.79 that is still much higher than the highest CI value in other function zones. The core function zone(CFZ), the traditional aggregation zone of impervious surface, had the highest contagion index(CONTAG) values, but it contributed less than UFEZ due to its small area. The CI value of the new urban developed zone(NUDZ) increased rapidly, and it increased from negative to positive and multiplied, becoming animportant contributor to the rise of urban impervious surface. However, the ecological conservation zone(ECZ) had a constant negative contribution all the time, and its CI value decreased gradually. Moreover, the landscape metrics and centroids of impervious surface in different density classes differed greatly. The high-density impervious surface had a more compact configuration and a greater impact on the eco-environment.展开更多
We aim to provide a tool for independent system operators to detect the collusion and identify the colluding firms by using day-ahead data. In this paper, an approach based on supervised machine learning is presented ...We aim to provide a tool for independent system operators to detect the collusion and identify the colluding firms by using day-ahead data. In this paper, an approach based on supervised machine learning is presented for collusion detection in electricity markets. The possible scenarios of the collusion among generation firms are firstly identified. Then,for each scenario and possible load demand, market equilibrium is computed. Market equilibrium points under different collusions and their peripheral points are used to train the collusion detection machine using supervised learning approaches such as classification and regression tree(CART) and support vector machine(SVM) algorithms. By applying the proposed approach to a four-firm and ten-generator test system, the accuracy of the proposed approach is evaluated and the efficiency of SVM and CART algorithms in collusion detection are compared with other supervised learning and statistical techniques.展开更多
文摘The increase of competition, economic recession and financial crises has increased business failure and depending on this the researchers have attempted to develop new approaches which can yield more correct and more reliable results. The classification and regression tree (CART) is one of the new modeling techniques which is developed for this purpose. In this study, the classification and regression trees method is explained and tested the power of the financial failure prediction. CART is applied for the data of industry companies which is trade in Istanbul Stock Exchange (ISE) between 1997-2007. As a result of this study, it has been observed that, CART has a high predicting power of financial failure one, two and three years prior to failure, and profitability ratios being the most important ratios in the prediction of failure.
基金National Natural Science Foundation of China(No.61163010)
文摘This paper presents a supervised learning algorithm for retinal vascular segmentation based on classification and regression tree (CART) algorithm and improved adptive bosting (AdaBoost). Local binary patterns (LBP) texture features and local features are extracted by extracting,reversing,dilating and enhancing the green components of retinal images to construct a 17-dimensional feature vector. A dataset is constructed by using the feature vector and the data manually marked by the experts. The feature is used to generate CART binary tree for nodes,where CART binary tree is as the AdaBoost weak classifier,and AdaBoost is improved by adding some re-judgment functions to form a strong classifier. The proposed algorithm is simulated on the digital retinal images for vessel extraction (DRIVE). The experimental results show that the proposed algorithm has higher segmentation accuracy for blood vessels,and the result basically contains complete blood vessel details. Moreover,the segmented blood vessel tree has good connectivity,which basically reflects the distribution trend of blood vessels. Compared with the traditional AdaBoost classification algorithm and the support vector machine (SVM) based classification algorithm,the proposed algorithm has higher average accuracy and reliability index,which is similar to the segmentation results of the state-of-the-art segmentation algorithm.
基金Under the auspices of National Natural Science Foundation of China(No.41671339)
文摘The sub-pixel impervious surface percentage(SPIS) is the fraction of impervious surface area in one pixel,and it is an important indicator of urbanization.Using remote sensing data,the spatial distribution of SPIS values over large areas can be extracted,and these data are significant for studies of urban climate,environment and hydrology.To develop a stabilized,multi-temporal SPIS estimation method suitable for typical temperate semi-arid climate zones with distinct seasons,an optimal model for estimating SPIS values within Beijing Municipality was built that is based on the classification and regression tree(CART) algorithm.First,models with different input variables for SPIS estimation were built by integrating multi-source remote sensing data with other auxiliary data.The optimal model was selected through the analysis and comparison of the assessed accuracy of these models.Subsequently,multi-temporal SPIS mapping was carried out based on the optimal model.The results are as follows:1) multi-seasonal images and nighttime light(NTL) data are the optimal input variables for SPIS estimation within Beijing Municipality,where the intra-annual variability in vegetation is distinct.The different spectral characteristics in the cultivated land caused by the different farming characteristics and vegetation phenology can be detected by the multi-seasonal images effectively.NLT data can effectively reduce the misestimation caused by the spectral similarity between bare land and impervious surfaces.After testing,the SPIS modeling correlation coefficient(r) is approximately 0.86,the average error(AE) is approximately 12.8%,and the relative error(RE) is approximately 0.39.2) The SPIS results have been divided into areas with high-density impervious cover(70%–100%),medium-density impervious cover(40%–70%),low-density impervious cover(10%–40%) and natural cover(0%–10%).The SPIS model performed better in estimating values for high-density urban areas than other categories.3) Multi-temporal SPIS mapping(1991–2016) was conducted based on the optimized SPIS results for 2005.After testing,AE ranges from 12.7% to 15.2%,RE ranges from 0.39 to 0.46,and r ranges from 0.81 to 0.86.It is demonstrated that the proposed approach for estimating sub-pixel level impervious surface by integrating the CART algorithm and multi-source remote sensing data is feasible and suitable for multi-temporal SPIS mapping of areas with distinct intra-annual variability in vegetation.
基金This work is supported by the NSFC[Grant Nos.61772281,61703212,61602254]Jiangsu Province Natural Science Foundation[Grant No.BK2160968]the Priority Academic Program Development of Jiangsu Higher Edu-cation Institutions(PAPD)and Jiangsu Collaborative Innovation Center on Atmospheric Environment and Equipment Technology(CICAEET).
文摘Privacy protection is a hot research topic in information security field.An improved XGBoost algorithm is proposed to protect the privacy in classification tasks.By combining with differential privacy protection,the XGBoost can improve the classification accuracy while protecting privacy information.When using CART regression tree to build a single decision tree,noise is added according to Laplace mechanism.Compared with random forest algorithm,this algorithm can reduce computation cost and prevent overfitting to a certain extent.The experimental results show that the proposed algorithm is more effective than other traditional algorithms while protecting the privacy information in training data.
文摘<strong>Purpose of Review:</strong> The management of eye injuries is both difficult and argumentative. This study attempts to highlight the management of ocular trauma using currently available information in the literature and author experience. This review presents a workable framework from the first presentation, epidemiology, classification, investigations, management principles, complications, prognostic factors, final visual outcome and management debates. <strong>Review Findings:</strong> Mechanical ocular trauma is a leading cause of monocular blindness and possible handicap worldwide. Among several classification systems, the most widely accepted is Birmingham Eye Trauma Terminology (BETT). Mechanical ocular trauma is a topic of unsolved controversy. Patching for corneal abrasion, paracentesis for hyphema, the timing of cataract surgery and intraocular lens implantation are all issues in anterior segment injuries. Regarding posterior segment controversies, the timing of vitrectomy, use of prophylactic cryotherapy, the necessity of intravitreal antibiotics in the absence of infection, the use of vitrectomy vs vitreous tap in traumatic endophthalmitis is the issues. The pediatric age group needs to be approached by a different protocol due to the risk of amblyopia, intraocular inflammation, and significant vitreoretinal adhesions. The various prognostic factors have a role in the final visual outcome. B scan is used to exclude R.D, Intraocular foreign body (IOFB), and vitreous haemorrhage in hazy media. Individual surgical strategies are used for every patient according to the classification and extent of the injuries. <strong>Conclusion:</strong> This article examines relevant evidence on the management challenges and controversies of mechanical trauma of the eye and offers treatment recommendations based on published research and the authors’ own experience.
基金National Basic Research Program of China,No.2015CB953603National Natural Science Foundation of China,No.41671339State Key Laboratory of Earth Surface Processes and Resource Ecology,No.2017-FX-01(1)
文摘Impervious surface(IS) is often recognized as the indicator of urban environmental changes. Numerous research efforts have been devoted to studying its spatio-temporal dynamics and ecological effects, especially for the IS in Beijing metropolitan region. However, most previous studies primarily considered the Beijing metropolitan region as a whole without considering the differences and heterogeneity among the function zones. In this study, the subpixel impervious surface results in Beijing within a time series(1991, 2001, 2005, 2011 and 2015) were extracted by means of the classification and regression tree(CART) model combined with change detection models. Then based on the method of standard deviation ellipse, Lorenz curve, contribution index(CI) and landscape metrics, the spatio-temporal dynamics and variations of IS(1991, 2001, 2011 and 2015) in different function zones and districts were analyzed. It is found that the total area of impervious surface in Beijing increased dramatically during the study period, increasing about 144.18%. The deflection angle of major axis of standard deviation ellipse decreased from 47.15° to 38.82°, indicating the major development axis in Beijing gradually moved from northeast-southwest to north-south. Moreover, the heterogeneity of impervious surface’s distribution among 16 districts weakened gradually, but the CI values and landscape metrics in four function zones differed greatly. The urban function extended zone(UFEZ), the main source of the growth of IS in Beijing, had the highest CI values. Its lowest CI value was 1.79 that is still much higher than the highest CI value in other function zones. The core function zone(CFZ), the traditional aggregation zone of impervious surface, had the highest contagion index(CONTAG) values, but it contributed less than UFEZ due to its small area. The CI value of the new urban developed zone(NUDZ) increased rapidly, and it increased from negative to positive and multiplied, becoming animportant contributor to the rise of urban impervious surface. However, the ecological conservation zone(ECZ) had a constant negative contribution all the time, and its CI value decreased gradually. Moreover, the landscape metrics and centroids of impervious surface in different density classes differed greatly. The high-density impervious surface had a more compact configuration and a greater impact on the eco-environment.
文摘We aim to provide a tool for independent system operators to detect the collusion and identify the colluding firms by using day-ahead data. In this paper, an approach based on supervised machine learning is presented for collusion detection in electricity markets. The possible scenarios of the collusion among generation firms are firstly identified. Then,for each scenario and possible load demand, market equilibrium is computed. Market equilibrium points under different collusions and their peripheral points are used to train the collusion detection machine using supervised learning approaches such as classification and regression tree(CART) and support vector machine(SVM) algorithms. By applying the proposed approach to a four-firm and ten-generator test system, the accuracy of the proposed approach is evaluated and the efficiency of SVM and CART algorithms in collusion detection are compared with other supervised learning and statistical techniques.