分布式光伏受天气影响较大,测算110kV供电区域的分布式光伏承载能力,对区域供电来说意义重大。基于此,提出基于分类与回归树(calssification and regression tree,CART)的110kV供电区域分布式光伏承载能力测算模型。该模型以分布式电源...分布式光伏受天气影响较大,测算110kV供电区域的分布式光伏承载能力,对区域供电来说意义重大。基于此,提出基于分类与回归树(calssification and regression tree,CART)的110kV供电区域分布式光伏承载能力测算模型。该模型以分布式电源输出功率、区域分布式电源发电量占比、局部分布式电源线损增量等数据为基础,利用CART决策树建立110kV供电区域分布式光伏承载能力测算模型,并使用改进鲸鱼优化算法求解测算结果。经实验测试发现,该模型对分布式光伏承载能力的测算精准度较高,可有效测算不同实验区域在不同季节时的分布式光伏承载能力,具有较高的应用价值。展开更多
在开展新能源出力预测阶段,由于新能源自身具有波动性和间歇性,导致预测结果的可靠性难以得到保障。为此,提出基于XGBoost和QRLSTM的新能源出力高精度预测方法。采用极限梯度提升算法(EXtreme Gradient Boosting,XGBoost)建立新能源出...在开展新能源出力预测阶段,由于新能源自身具有波动性和间歇性,导致预测结果的可靠性难以得到保障。为此,提出基于XGBoost和QRLSTM的新能源出力高精度预测方法。采用极限梯度提升算法(EXtreme Gradient Boosting,XGBoost)建立新能源出力数据的目标函数,利用二阶泰勒展开式对目标函数进行近似处理。结合分位数回归构(Quantile Regression,QR)改进长短期记忆(Long Short Term Memory,LSTM)递归神经网络,构建QRLSTM模型将近似处理后的数据输入至该模型中,通过逻辑门完成新能源出力预测。在测试结果中,实际方法在不同环境条件下对于新能源机组出力情况的预测结果均与实际情况保持较高的拟合度,具有较高的精准度。展开更多
The increase of competition, economic recession and financial crises has increased business failure and depending on this the researchers have attempted to develop new approaches which can yield more correct and more ...The increase of competition, economic recession and financial crises has increased business failure and depending on this the researchers have attempted to develop new approaches which can yield more correct and more reliable results. The classification and regression tree (CART) is one of the new modeling techniques which is developed for this purpose. In this study, the classification and regression trees method is explained and tested the power of the financial failure prediction. CART is applied for the data of industry companies which is trade in Istanbul Stock Exchange (ISE) between 1997-2007. As a result of this study, it has been observed that, CART has a high predicting power of financial failure one, two and three years prior to failure, and profitability ratios being the most important ratios in the prediction of failure.展开更多
文摘分布式光伏受天气影响较大,测算110kV供电区域的分布式光伏承载能力,对区域供电来说意义重大。基于此,提出基于分类与回归树(calssification and regression tree,CART)的110kV供电区域分布式光伏承载能力测算模型。该模型以分布式电源输出功率、区域分布式电源发电量占比、局部分布式电源线损增量等数据为基础,利用CART决策树建立110kV供电区域分布式光伏承载能力测算模型,并使用改进鲸鱼优化算法求解测算结果。经实验测试发现,该模型对分布式光伏承载能力的测算精准度较高,可有效测算不同实验区域在不同季节时的分布式光伏承载能力,具有较高的应用价值。
文摘在开展新能源出力预测阶段,由于新能源自身具有波动性和间歇性,导致预测结果的可靠性难以得到保障。为此,提出基于XGBoost和QRLSTM的新能源出力高精度预测方法。采用极限梯度提升算法(EXtreme Gradient Boosting,XGBoost)建立新能源出力数据的目标函数,利用二阶泰勒展开式对目标函数进行近似处理。结合分位数回归构(Quantile Regression,QR)改进长短期记忆(Long Short Term Memory,LSTM)递归神经网络,构建QRLSTM模型将近似处理后的数据输入至该模型中,通过逻辑门完成新能源出力预测。在测试结果中,实际方法在不同环境条件下对于新能源机组出力情况的预测结果均与实际情况保持较高的拟合度,具有较高的精准度。
文摘The increase of competition, economic recession and financial crises has increased business failure and depending on this the researchers have attempted to develop new approaches which can yield more correct and more reliable results. The classification and regression tree (CART) is one of the new modeling techniques which is developed for this purpose. In this study, the classification and regression trees method is explained and tested the power of the financial failure prediction. CART is applied for the data of industry companies which is trade in Istanbul Stock Exchange (ISE) between 1997-2007. As a result of this study, it has been observed that, CART has a high predicting power of financial failure one, two and three years prior to failure, and profitability ratios being the most important ratios in the prediction of failure.