Stainless steels such as STS 304,316 and 630 are frequently used as shaft materials in small fiber reinforced polymer(FRP) fishing boats.If the shaft material is exposed to a severely corrosive environment such as sea...Stainless steels such as STS 304,316 and 630 are frequently used as shaft materials in small fiber reinforced polymer(FRP) fishing boats.If the shaft material is exposed to a severely corrosive environment such as seawater,it should be protected using appropriate methods.The impressed current cathodic protection was used to inhibit corrosion in shaft materials.In anodic polarization,passivity was remarkably more evident in STS 316 stainless steel than in STS 304 and STS 630.The pitting potentials of STS 304,316,and 630 stainless steels were 0.30,0.323,and 0.260 V,respectively.The concentration polarization due to oxygen reduction and activation polarization due to hydrogen generation were evident in the cathodic polarization trends of all three stainless steeds.STS 316 had the lowest current densities in all potential ranges,and STS 630 had the highest.Tafel analysis showed that STS 316 was the most noble in the three.In addition,the corrosion current density was the lowest for STS 316.展开更多
Al-Zn-Mg alloys with different Zn/Mg mass ratios were evaluated as sacrificial anodes for cathodic protection of carbon steel in 3.5 wt.%Na Cl solution.The anodes were fabricated from pure Al,Zn and Mg metals using ca...Al-Zn-Mg alloys with different Zn/Mg mass ratios were evaluated as sacrificial anodes for cathodic protection of carbon steel in 3.5 wt.%Na Cl solution.The anodes were fabricated from pure Al,Zn and Mg metals using casting technique.Optical microscopy,SEM-EDS,XRD and electrochemical techniques were used.The results indicated that with decreasing Zn/Mg mass ratio,the grain size ofα(Al)and the particle size of the precipitates decreased while the volume fraction of the precipitates increased.The anode with Zn/Mg mass ratio>4.0 exhibited the lowest corrosion rate,while the anode with Zn/Mg mass ratio<0.62 gave the highest corrosion rate and provided the highest cathodic protection efficiency for carbon steel(AISI 1018).Furthermore,the results showed that the anode with Zn/Mg mass ratio<0.62 exhibited a porous corrosion product compared to the other anodes.展开更多
The environmental conditions around the first offshore HZ 21- 1 steel wellhead platform in the South China Sea are characterized by deep water, frequent typhoons, rough waves, high water temperature, severely corrosiv...The environmental conditions around the first offshore HZ 21- 1 steel wellhead platform in the South China Sea are characterized by deep water, frequent typhoons, rough waves, high water temperature, severely corrosive seawater, and thick fouling organism attachments. The design and effectiveness of galvanic anode protection system are presented, and several methods are described, which are the calculation method of the protective current density considering the variation of water depth, the method of determining protection parameters considering various factors, the arrangement of anodes based on potential distribution and current requirements at different water depths, and the method of anode installation. Finally the effect of the accuracy of selected cathodic protection parameters on the economic benefits of offshore projects is also discussed..展开更多
Cathodic protection is an effective electrochemical technique for preventing corrosion of metallic structures, for large structures like piles network impressed current cathodic protection (ICCP) system is usually pre...Cathodic protection is an effective electrochemical technique for preventing corrosion of metallic structures, for large structures like piles network impressed current cathodic protection (ICCP) system is usually preferred. The main aim of this study is to obtain the optimum protection potential that would provide a full cathodic protection for steel piles net-work immersed in sea water at Al-Zubair harbor. The effect of one immeasurable factor (path of anode (χ1)) and two measurable factors (position of anode (χ2) and voltage of power supply (χ3)) on protection potential are studied. Each factor has three different levels (high, medium, and low). Twenty-seven experiments were conducted based on a full factorial design of experiments. The results show that, a sufficient protection for three cathodes can be provided through the electrical circuit connecting them within the appropriate geometric shape.The protection potential is icreased with increasing the voltage of power supply and decreasing of distance between the anode and cathodes (piles network).展开更多
目的 对海洋平台导管架外加电流阴极保护设计通电点的选择等问题进行分析,为海洋平台导管架阴极保护设计提供指导。方法 利用BEASY CP数值模拟软件,通过数值模拟计算方法对导管架外加电流阴极保护系统设计的基础问题进行了研究,包括保...目的 对海洋平台导管架外加电流阴极保护设计通电点的选择等问题进行分析,为海洋平台导管架阴极保护设计提供指导。方法 利用BEASY CP数值模拟软件,通过数值模拟计算方法对导管架外加电流阴极保护系统设计的基础问题进行了研究,包括保护对象的确定、通电点的设置、辅助阳极选型和阳极数量及安装位置等。结果 导管架外加电流阴极保护设计时,若只考虑海水浸渍部分,则无法使导管架海水和海泥部分均得到有效保护。设置通电点时,考虑电阻(1.01×10-6Ω/m)和不考虑电阻两种情况下导管架的保护电位相近,绝对误差不超过1 m V,通电点的位置对保护效果影响较小。阴极保护输出电流为17 A时,三种不同直径(300、600、900 mm)辅助阳极阴极保护系统的保护相近,保护电位在803~899.2 m V(vs.CSE)之间。三种不同阳极设计方案的输出电流分别为17、17、16.5 A,对应的保护效果分别为803.34~899.20 m V(vs.CSE)、802.96~850.64 m V(vs.CSE)、800.36~848.26 m V(vs.CSE)。2#阳极的保护效果比1#阳极的保护效果均匀,两支阳极方案在最低保护效果下所需电流比单支阳极更小且保护更均匀。结论 设计外加电流阴极保护系统时,应当充分考虑与待保护对象相连接的所有金属结构物。对于小型导管架而言,金属电阻对导管架外加电流阴极保护系统的电位分布影响很小,因此通电点的选择较容易。外加电流阴极保护系统设计时应考虑电流密度对辅助阳极的消耗影响,选取适当尺寸的阳极。通过数值模拟方法,可以优化阳极数量和位置,从而实现保护电流较小且保护效果更均匀,并满足一定的经济性要求。展开更多
文摘Stainless steels such as STS 304,316 and 630 are frequently used as shaft materials in small fiber reinforced polymer(FRP) fishing boats.If the shaft material is exposed to a severely corrosive environment such as seawater,it should be protected using appropriate methods.The impressed current cathodic protection was used to inhibit corrosion in shaft materials.In anodic polarization,passivity was remarkably more evident in STS 316 stainless steel than in STS 304 and STS 630.The pitting potentials of STS 304,316,and 630 stainless steels were 0.30,0.323,and 0.260 V,respectively.The concentration polarization due to oxygen reduction and activation polarization due to hydrogen generation were evident in the cathodic polarization trends of all three stainless steeds.STS 316 had the lowest current densities in all potential ranges,and STS 630 had the highest.Tafel analysis showed that STS 316 was the most noble in the three.In addition,the corrosion current density was the lowest for STS 316.
文摘Al-Zn-Mg alloys with different Zn/Mg mass ratios were evaluated as sacrificial anodes for cathodic protection of carbon steel in 3.5 wt.%Na Cl solution.The anodes were fabricated from pure Al,Zn and Mg metals using casting technique.Optical microscopy,SEM-EDS,XRD and electrochemical techniques were used.The results indicated that with decreasing Zn/Mg mass ratio,the grain size ofα(Al)and the particle size of the precipitates decreased while the volume fraction of the precipitates increased.The anode with Zn/Mg mass ratio>4.0 exhibited the lowest corrosion rate,while the anode with Zn/Mg mass ratio<0.62 gave the highest corrosion rate and provided the highest cathodic protection efficiency for carbon steel(AISI 1018).Furthermore,the results showed that the anode with Zn/Mg mass ratio<0.62 exhibited a porous corrosion product compared to the other anodes.
文摘The environmental conditions around the first offshore HZ 21- 1 steel wellhead platform in the South China Sea are characterized by deep water, frequent typhoons, rough waves, high water temperature, severely corrosive seawater, and thick fouling organism attachments. The design and effectiveness of galvanic anode protection system are presented, and several methods are described, which are the calculation method of the protective current density considering the variation of water depth, the method of determining protection parameters considering various factors, the arrangement of anodes based on potential distribution and current requirements at different water depths, and the method of anode installation. Finally the effect of the accuracy of selected cathodic protection parameters on the economic benefits of offshore projects is also discussed..
文摘Cathodic protection is an effective electrochemical technique for preventing corrosion of metallic structures, for large structures like piles network impressed current cathodic protection (ICCP) system is usually preferred. The main aim of this study is to obtain the optimum protection potential that would provide a full cathodic protection for steel piles net-work immersed in sea water at Al-Zubair harbor. The effect of one immeasurable factor (path of anode (χ1)) and two measurable factors (position of anode (χ2) and voltage of power supply (χ3)) on protection potential are studied. Each factor has three different levels (high, medium, and low). Twenty-seven experiments were conducted based on a full factorial design of experiments. The results show that, a sufficient protection for three cathodes can be provided through the electrical circuit connecting them within the appropriate geometric shape.The protection potential is icreased with increasing the voltage of power supply and decreasing of distance between the anode and cathodes (piles network).
文摘目的 对海洋平台导管架外加电流阴极保护设计通电点的选择等问题进行分析,为海洋平台导管架阴极保护设计提供指导。方法 利用BEASY CP数值模拟软件,通过数值模拟计算方法对导管架外加电流阴极保护系统设计的基础问题进行了研究,包括保护对象的确定、通电点的设置、辅助阳极选型和阳极数量及安装位置等。结果 导管架外加电流阴极保护设计时,若只考虑海水浸渍部分,则无法使导管架海水和海泥部分均得到有效保护。设置通电点时,考虑电阻(1.01×10-6Ω/m)和不考虑电阻两种情况下导管架的保护电位相近,绝对误差不超过1 m V,通电点的位置对保护效果影响较小。阴极保护输出电流为17 A时,三种不同直径(300、600、900 mm)辅助阳极阴极保护系统的保护相近,保护电位在803~899.2 m V(vs.CSE)之间。三种不同阳极设计方案的输出电流分别为17、17、16.5 A,对应的保护效果分别为803.34~899.20 m V(vs.CSE)、802.96~850.64 m V(vs.CSE)、800.36~848.26 m V(vs.CSE)。2#阳极的保护效果比1#阳极的保护效果均匀,两支阳极方案在最低保护效果下所需电流比单支阳极更小且保护更均匀。结论 设计外加电流阴极保护系统时,应当充分考虑与待保护对象相连接的所有金属结构物。对于小型导管架而言,金属电阻对导管架外加电流阴极保护系统的电位分布影响很小,因此通电点的选择较容易。外加电流阴极保护系统设计时应考虑电流密度对辅助阳极的消耗影响,选取适当尺寸的阳极。通过数值模拟方法,可以优化阳极数量和位置,从而实现保护电流较小且保护效果更均匀,并满足一定的经济性要求。